Ligand and ensemble effects in adsorption on alloy surfaces

Density functional theory is used to study the adsorption of carbon monoxide, oxygen and nitrogen on various Au/Pd(111) bimetallic alloy surfaces. By varying the Au content in the surface we are able to make a clear separation into geometrical (or ensemble) effects and electronic (or ligand) effects determining the adsorption properties.

[1]  J. Nørskov,et al.  Synergetic effects in CO adsorption on Cu-Pd(111) alloys , 2001 .

[2]  T. Ramsvik,et al.  CO adsorption on the Pt/Rh(100) surface studied by high-resolution photoemission , 2000 .

[3]  Š. Pick On the electronic structure of surface Pt–Sn alloys , 1999 .

[4]  K. Tan,et al.  Partial oxidation of methane to synthesis gas over α-Al2O3-supported bimetallic Pt–Co catalysts , 1999 .

[5]  P. Sautet,et al.  Dependence of stretching frequency on surface coverage and adsorbate–adsorbate interactions: a density-functional theory approach of CO on Pd (111) , 1999 .

[6]  D. J. Pegg,et al.  The electrooxidation of carbon monoxide on ruthenium modified Pt(110) , 1998 .

[7]  M. Fernández-García,et al.  Interaction of CO and NO with PdCu(111) Surfaces , 1998 .

[8]  D. P. Woodruff,et al.  A photoelectron diffraction study of ordered structures in the chemisorption system Pd{111}-CO , 1998 .

[9]  Clausen,et al.  Design of a surface alloy catalyst for steam reforming , 1998, Science.

[10]  R. Behm SPATIALLY RESOLVED CHEMISTRY ON BIMETALLIC SURFACES , 1998 .

[11]  F. Delbecq,et al.  Adsorption of CO and NO on (111) and (100) surfaces of Pd3Mn compared with Pd : a theoretical approach , 1998 .

[12]  M. Schmal,et al.  The cyclohexanol dehydrogenation on RhCu/Al2O3 catalysts: 2. Chemisorption and reaction , 1997 .

[13]  R. Behm,et al.  Correlation between local substrate structure and local chemical properties: CO adsorption on well-defined bimetallic surfaces , 1997 .

[14]  R. Linke,et al.  Interaction properties of molecules with binary alloy surfaces , 1994 .

[15]  P. Delichère,et al.  Alloying effect on the adsorption properties of Pd50Cu50{111} single crystal surface , 1993 .

[16]  D. Goodman,et al.  CO adsorption on Pd(111) and Pd(100): Low and high pressure correlations , 1993 .

[17]  J. Yates,et al.  Dependence of effective desorption kinetic parameters on surface coverage and adsorption temperature: CO on Pd(111) , 1989 .

[18]  M. Hove,et al.  Leed intensity analysis of the surface structures of Pd(111) and of CO adsorbed on Pd(111) in a (√3 × √3)R30° arrangement , 1987 .

[19]  G. Somorjai,et al.  Influence of ensemble size on CO chemisorption and catalytic n-hexane conversion by Au-Pt(111) bimetallic single-crystal surfaces , 1983 .

[20]  A. Bradshaw,et al.  The chemisorption of carbon monoxide on palladium single crystal surfaces: IR spectroscopic evidence for localised site adsorption , 1978 .

[21]  H. Gasteiger,et al.  On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces , 1996 .

[22]  R. M. Lambert,et al.  Carbon monoxide chemisorption on Pt-dosed W(100): Pt strained overlayers, Pt crystallites and W/Pt surface alloys , 1988 .