Bounds on Dimension Reduction in the Nuclear Norm

For all n ≥ 1, we give an explicit construction of m × m matrices A1, …, An with m = 2⌊n∕2⌋ such that for any d and d × d matrices \(A^{\prime }_1,\ldots ,A^{\prime }_n\) that satisfy $$\displaystyle \|A^{\prime }_i-A^{\prime }_j\|{ }_{\scriptstyle {\mathsf {S}}_1} \,\leq \, \|A_i-A_j\|{ }_{\scriptstyle {\mathsf {S}}_1}\,\leq \, (1+\delta ) \|A^{\prime }_i-A^{\prime }_j\|{ }_{\scriptstyle {\mathsf {S}}_1} $$ for all i, j ∈{1, …, n} and small enough δ = O(n−c), where c > 0 is a universal constant, it must be the case that d ≥ 2⌊n∕2⌋−1. This stands in contrast to the metric theory of commutative lp spaces, as it is known that for any p ≥ 1, any n points in lp embed exactly in \(\ell _p^d\) for d = n(n − 1)∕2.

[1]  G. Schechtman More on embedding subspaces of $L_p$ in $l^n_r$ , 1987 .

[2]  Oded Regev,et al.  Entropy-based bounds on dimension reduction in L1 , 2011 .

[3]  Gideon Schechtman,et al.  Impossibility of dimension reduction in the nuclear norm , 2018, SODA.

[4]  Ittai Abraham,et al.  Advances in metric embedding theory , 2011 .

[5]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[6]  Thomas Vidick,et al.  Entanglement of approximate quantum strategies in XOR games , 2016, Quantum Inf. Comput..

[7]  M. Talagrand Embedding Subspaces of L p in ℓ p N , 1995 .

[8]  William Slofstra A group with at least subexponential hyperlinear profile , 2018 .

[9]  S. Okubo Real representations of finite Clifford algebras. I, Classification , 1991 .

[10]  William Slofstra,et al.  Entanglement in Non-local Games and the Hyperlinear Profile of Groups , 2018, Annales Henri Poincaré.

[12]  Kasper Green Larsen,et al.  Optimality of the Johnson-Lindenstrauss Lemma , 2016, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[13]  J. Matousek,et al.  On the distortion required for embedding finite metric spaces into normed spaces , 1996 .

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  Theworkof Alain Connes CLASSIFICATION OF INJECTIVE FACTORS , 1981 .

[16]  W. T. Gowers,et al.  Inverse and stability theorems for approximate representations of finite groups , 2015, 1510.04085.

[17]  Thomas Vidick,et al.  A three-player coherent state embezzlement game , 2018, Quantum.

[18]  Ilan Newman,et al.  Finite Volume Spaces and Sparsification , 2010, 1002.3541.

[19]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[20]  Keith Ball Isometric Embedding in lp-spaces , 1990, Eur. J. Comb..

[21]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[22]  J. Lindenstrauss,et al.  Approximation of zonoids by zonotopes , 1989 .

[23]  R. Werner,et al.  Maximal violation of Bell's inequalities is generic in quantum field theory , 1987 .

[24]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[25]  M. Talagrand Embedding subspaces of L1 into l1N , 1990 .

[26]  CharikarMoses,et al.  On the impossibility of dimension reduction in l1 , 2005 .

[27]  M. Talagrand Embedding Subspaces of L 1 into l N 1 , 1990 .

[28]  A. Connes,et al.  Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .

[29]  Alexandr Andoni,et al.  Near Linear Lower Bound for Dimension Reduction in L1 , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.