Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems

Comprehensive learning particle swarm optimization (CLPSO) is a powerful state-of-the-art single-objective metaheuristic. Extending from CLPSO, this paper proposes multiswarm CLPSO (MSCLPSO) for multiobjective optimization. MSCLPSO involves multiple swarms, with each swarm associated with a separate original objective. Each particle’s personal best position is determined just according to the corresponding single objective. Elitists are stored externally. MSCLPSO differs from existing multiobjective particle swarm optimizers in three aspects. First, each swarm focuses on optimizing the associated objective using CLPSO, without learning from the elitists or any other swarm. Second, mutation is applied to the elitists and the mutation strategy appropriately exploits the personal best positions and elitists. Third, a modified differential evolution (DE) strategy is applied to some extreme and least crowded elitists. The DE strategy updates an elitist based on the differences of the elitists. The personal best positions carry useful information about the Pareto set, and the mutation and DE strategies help MSCLPSO discover the true Pareto front. Experiments conducted on various benchmark problems demonstrate that MSCLPSO can find nondominated solutions distributed reasonably over the true Pareto front in a single run.

[1]  D. H. Marks,et al.  A review and evaluation of multiobjective programing techniques , 1975 .

[2]  Saúl Zapotecas Martínez,et al.  A multi-objective particle swarm optimizer based on decomposition , 2011, GECCO '11.

[3]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[4]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[5]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[6]  Andries Petrus Engelbrecht,et al.  Knowledge Transfer Strategies for Vector Evaluated Particle Swarm Optimization , 2013, EMO.

[7]  JiaoLicheng,et al.  Moea/d with adaptive weight adjustment , 2014 .

[8]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[9]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[10]  Farrukh Aslam Khan,et al.  Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks , 2013, Appl. Soft Comput..

[11]  Ben Niu,et al.  A Multi-objective Particle Swarm Optimization Based on Decomposition , 2013, ICIC.

[12]  JiaoLicheng,et al.  MOEA/D with uniform decomposition measurement for many-objective problems , 2014, SOCO 2014.

[13]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[14]  Maoguo Gong,et al.  ADAPTIVE RANKS CLONE AND k‐NEAREST NEIGHBOR LIST–BASED IMMUNE MULTI‐OBJECTIVE OPTIMIZATION , 2010, Comput. Intell..

[15]  M. Fleischer,et al.  The Measure of Pareto Optima , 2003, EMO.

[16]  Hui Wang,et al.  Multi-Objective Sustainable Operation of the Three Gorges Cascaded Hydropower System Using Multi-Swarm Comprehensive Learning Particle Swarm Optimization , 2016 .

[17]  Hong Li,et al.  A modification to MOEA/D-DE for multiobjective optimization problems with complicated Pareto sets , 2012, Inf. Sci..

[18]  Qingfu Zhang,et al.  MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and AntColony , 2013, IEEE Transactions on Cybernetics.

[19]  Yang Gao,et al.  Selectively-informed particle swarm optimization , 2015, Scientific Reports.

[20]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[21]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[22]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2011, IEEE Trans. Evol. Comput..

[23]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[24]  Wali Khan Mashwani MOEA/D with DE and PSO: MOEA/D-DE+PSO , 2011, SGAI Conf..

[25]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[26]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[27]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[28]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[29]  Yang Gao,et al.  Adequate is better: particle swarm optimization with limited-information , 2015, Appl. Math. Comput..

[30]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[31]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[32]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[33]  Fang Liu,et al.  MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem , 2014, Neurocomputing.

[34]  Halife Kodaz,et al.  A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization , 2015, Eng. Appl. Artif. Intell..

[35]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[36]  Tobias Friedrich,et al.  Approximating the volume of unions and intersections of high-dimensional geometric objects , 2008, Comput. Geom..

[37]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[38]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[39]  Hong Li,et al.  MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives , 2013, Comput. Oper. Res..

[40]  Tao Yu,et al.  Equilibrium-Inspired Multiple Group Search Optimization With Synergistic Learning for Multiobjective Electric Power Dispatch , 2013, IEEE Transactions on Power Systems.

[41]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[42]  Fang Liu,et al.  MOEA/D with Adaptive Weight Adjustment , 2014, Evolutionary Computation.

[43]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[44]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[45]  Kalyanmoy Deb,et al.  A Fast and Effective Method for Pruning of Non-dominated Solutions in Many-Objective Problems , 2006, PPSN.

[46]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[47]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[48]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[49]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems , 2006, Int. J. Intell. Syst..

[50]  Jiannong Cao,et al.  Multiple Populations for Multiple Objectives: A Coevolutionary Technique for Solving Multiobjective Optimization Problems , 2013, IEEE Transactions on Cybernetics.