Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

[1]  Sarah L. R. Stevens,et al.  Expanded Phylogenetic Diversity and Metabolic Flexibility of Mercury-Methylating Microorganisms , 2020, mSystems.

[2]  Yuya Tada,et al.  Nitrospina-Like Bacteria Are Potential Mercury Methylators in the Mesopelagic Zone in the East China Sea , 2020, Frontiers in Microbiology.

[3]  Daniel S. Jones,et al.  An Improved hgcAB Primer Set and Direct High-Throughput Sequencing Expand Hg-Methylator Diversity in Nature , 2020, bioRxiv.

[4]  Anders F. Andersson,et al.  Marine snow as a habitat for microbial mercury methylators in the Baltic Sea , 2020, bioRxiv.

[5]  Emilie Villar,et al.  Widespread microbial mercury methylation genes in the global ocean. , 2020, Environmental microbiology reports.

[6]  R. Gennis,et al.  Structure of the cytochrome aa3-600 heme-copper menaquinol oxidase bound to inhibitor HQNO shows TM0 is part of the quinol binding site , 2019, Proceedings of the National Academy of Sciences.

[7]  C. Lamborg,et al.  Distribution of mercury‐cycling genes in the Arctic and equatorial Pacific Oceans and their relationship to mercury speciation , 2019, Limnology and Oceanography.

[8]  Emilie Villar,et al.  Widespread microbial mercury methylation genes in the global ocean , 2019, bioRxiv.

[9]  S. Hallam,et al.  A compendium of geochemical information from the Saanich Inlet water column , 2017, Scientific Data.

[10]  Daniel S. Jones,et al.  Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes , 2019, The ISME Journal.

[11]  F. Stewart,et al.  Microbial niches in marine oxygen minimum zones , 2018, Nature Reviews Microbiology.

[12]  J. DiRuggiero,et al.  MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis , 2018, Microbiome.

[13]  Alexandre J. Poulain,et al.  Shining light on recent advances in microbial mercury cycling , 2018, FACETS.

[14]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[15]  Eroma Abeysinghe,et al.  Searching the Sequence Read Archive using Jetstream and Wrangler , 2018, PEARC.

[16]  N. Selin,et al.  Modern science of a legacy problem: mercury biogeochemical research after the Minamata Convention. , 2018, Environmental Science: Processes & Impacts.

[17]  J. Heidelberg,et al.  Potential for primary productivity in a globally-distributed bacterial phototroph , 2018, The ISME Journal.

[18]  James Taylor,et al.  MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis , 2018, Microbiome.

[19]  Jody J. Wright,et al.  Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients , 2017, Nature Communications.

[20]  B. Thamdrup,et al.  Metabolic potential and in situ activity of marine Marinimicrobia bacteria in an anoxic water column , 2017, Environmental microbiology.

[21]  S. Tringe,et al.  A compendium of multi-omic sequence information from the Saanich Inlet water column , 2017, Scientific Data.

[22]  A. Schramm,et al.  The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins , 2017, Environmental microbiology reports.

[23]  N. Fisher,et al.  Bioaccumulation of methylmercury in a marine copepod , 2017, Environmental toxicology and chemistry.

[24]  É. Yergeau,et al.  Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic , 2017, Scientific Reports.

[25]  Alicia P. Higueruelo,et al.  Arpeggio: A Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures , 2017, Journal of molecular biology.

[26]  R. Mason,et al.  Effects of bottom water oxygen concentrations on mercury distribution and speciation in sediments below the oxygen minimum zone of the Arabian Sea , 2016 .

[27]  Mark B. Schultz,et al.  Microbial mercury methylation in Antarctic sea ice , 2016, Nature Microbiology.

[28]  A. Johs,et al.  Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem. , 2016, Environmental science & technology.

[29]  C. Gilmour,et al.  Global prevalence and distribution of genes and microorganisms involved in mercury methylation , 2015, Science Advances.

[30]  Dongwan D. Kang,et al.  MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities , 2015, PeerJ.

[31]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[32]  R. Mason,et al.  Controls on methylmercury accumulation in northern Gulf of Mexico sediments , 2015 .

[33]  É. Yergeau,et al.  Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident , 2015, Applied and Environmental Microbiology.

[34]  István Reményi,et al.  CCTOP: a Consensus Constrained TOPology prediction web server , 2015, Nucleic Acids Res..

[35]  Alexander S. Rose,et al.  NGL Viewer: a web application for molecular visualization , 2015, Nucleic Acids Res..

[36]  Michael Schroeder,et al.  PLIP: fully automated protein–ligand interaction profiler , 2015, Nucleic Acids Res..

[37]  Katherine S Pollard,et al.  Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome , 2015, Genome Biology.

[38]  K. Pollard,et al.  Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome , 2015, Genome Biology.

[39]  M. Goñi-Urriza,et al.  Relationships between bacterial energetic metabolism, mercury methylation potential, and hgcA/hgcB gene expression in Desulfovibrio dechloroacetivorans BerOc1 , 2015, Environmental Science and Pollution Research.

[40]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[41]  K. Schleifer,et al.  Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences , 2014, Nature Reviews Microbiology.

[42]  M. Saito,et al.  A global ocean inventory of anthropogenic mercury based on water column measurements , 2014, Nature.

[43]  S. Tringe,et al.  MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm , 2014, Microbiome.

[44]  Ljiljana Paša-Tolić,et al.  Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes , 2014, Proceedings of the National Academy of Sciences.

[45]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[46]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[47]  G. Dick,et al.  Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. , 2014, Environmental Microbiology.

[48]  C. Gilmour,et al.  Mercury methylation by novel microorganisms from new environments. , 2013, Environmental science & technology.

[49]  C. Huttenhower,et al.  PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes , 2013, Nature Communications.

[50]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[51]  Jerry M. Parks,et al.  The Genetic Basis for Bacterial Mercury Methylation , 2013, Science.

[52]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[53]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[54]  R. Macdonald,et al.  Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization. , 2012, Environmental science & technology.

[55]  Kishori M. Konwar,et al.  Microbial ecology of expanding oxygen minimum zones , 2012, Nature Reviews Microbiology.

[56]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[57]  Renato J. Alves,et al.  The superfamily of heme-copper oxygen reductases: types and evolutionary considerations. , 2012, Biochimica et biophysica acta.

[58]  C. Hammerschmidt,et al.  Vertical methylmercury distribution in the subtropical North Pacific Ocean , 2012 .

[59]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[60]  Ye Deng,et al.  Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume , 2011, The ISME Journal.

[61]  R. Gennis,et al.  The cytochrome bd respiratory oxygen reductases. , 2011, Biochimica et biophysica acta.

[62]  S. Rintoul,et al.  Mercury in the Southern Ocean , 2011 .

[63]  C. Schadt,et al.  Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132 as a Model for Understanding Bacterial Mercury Methylation , 2011, Applied and Environmental Microbiology.

[64]  David L. Valentine,et al.  A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico , 2011, Science.

[65]  P. Pevzner,et al.  The Generating Function of CID, ETD, and CID/ETD Pairs of Tandem Mass Spectra: Applications to Database Search* , 2010, Molecular & Cellular Proteomics.

[66]  C. Allen,et al.  A cbb(3)-type cytochrome C oxidase contributes to Ralstonia solanacearum R3bv2 growth in microaerobic environments and to bacterial wilt disease development in tomato. , 2010, Molecular plant-microbe interactions : MPMI.

[67]  Noelle E. Selin,et al.  Global Biogeochemical Cycling of Mercury: A Review , 2009 .

[68]  Brian C. Thomas,et al.  Community-wide analysis of microbial genome sequence signatures , 2009, Genome Biology.

[69]  H. Michel,et al.  The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration , 2009, Proceedings of the National Academy of Sciences.

[70]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[71]  N. Pirrone,et al.  The origin of methylmercury in open Mediterranean waters , 2009 .

[72]  A. Paulmier,et al.  Oxygen minimum zones (OMZs) in the modern ocean , 2009 .

[73]  J. Sprintall,et al.  Expanding Oxygen-Minimum Zones in the Tropical Oceans , 2008, Science.

[74]  Scott C. Doney,et al.  Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation , 2007 .

[75]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[76]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[77]  F. Mörchen,et al.  ESOM-Maps : tools for clustering , visualization , and classification with Emergent SOM , 2005 .

[78]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[79]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[80]  J. G. Kuenen,et al.  cbb3‐type cytochrome oxidase in the obligately chemolithoautotrophic Thiobacillus sp. W5 , 1997 .

[81]  W F Fitzgerald,et al.  Mercury and monomethylmercury: present and future concerns. , 1991, Environmental health perspectives.

[82]  R. Gennis,et al.  Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product , 1990, Journal of bacteriology.