Predictive species distribution modelling in butterflies

1 Institute of Geoecology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany. Tel. +49-331-977-2480 Fax +49-331-977-2092 email: boris.schroeder@uni-potsdam.de 2 Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, 26111 Oldenburg, Germany. 3 Current address: Bavarian Academy for Nature Conservation and Landscape Management ANL, 83410 Laufen, Germany. 4 UFZ Centre for Environmental Research Leipzig-Halle, Dept. of Conservation Biology, 06120 Halle/Saale, Germany. 5 UFZ Centre for Environmental Research Leipzig-Halle, Dept. of Community Ecology, 06120 Halle/Saale, Germany.

[1]  K. Jordan,et al.  The palearctic Butterflies , 1909 .

[2]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[3]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[4]  H. Akaike A new look at the statistical model identification , 1974 .

[5]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[6]  P. Vincent,et al.  Poisson regression models of species abundance , 1983 .

[7]  Mike P. Austin,et al.  Continuum Concept, Ordination Methods, and Niche Theory , 1985 .

[8]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[9]  G. Auble Wildlife 2000—modeling habitat relationships of terrestrial vertebrates , 1988 .

[10]  A. O. Nicholls How to make biological surveys go further with generalised linear models , 1989 .

[11]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[12]  David L. Verbyla,et al.  Resampling methods for evaluating classification accuracy of wildlife habitat models , 1989 .

[13]  N. Nagelkerke,et al.  A note on a general definition of the coefficient of determination , 1991 .

[14]  T. Yee,et al.  Generalized additive models in plant ecology , 1991 .

[15]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[16]  Paul Opdam,et al.  European Nuthatch Metapopulations in a Fragmented Agricultural Landscape , 1991 .

[17]  A. H. Murphy,et al.  Diagnostic verification of probability forecasts , 1992 .

[18]  R. Leemans,et al.  Comparing global vegetation maps with the Kappa statistic , 1992 .

[19]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[20]  P. Legendre,et al.  Partialling out the spatial component of ecological variation , 1992 .

[21]  Ken D. Bovee,et al.  Application and testing of a procedure to evaluate transferability of habitat suitability criteria , 1993 .

[22]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[23]  Joel C. Trexler,et al.  Nontraditional Regression Analyses , 1993 .

[24]  H. Olff,et al.  A hierarchical set of models for species response analysis , 1993 .

[25]  B. Manly,et al.  Resource selection by animals: statistical design and analysis for field studies. , 1994 .

[26]  I. Hanski A Practical Model of Metapopulation Dynamics , 1994 .

[27]  A. Fielding,et al.  Testing the Generality of Bird‐Habitat Models , 1995 .

[28]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[29]  O. Kindvall The impact of extreme weather on habitat preference and survival in a metapopulation of the bush cricket Metrioptera bicolor in Sweden , 1995 .

[30]  C. Chatfield Model uncertainty, data mining and statistical inference , 1995 .

[31]  Erich Barke,et al.  Hierarchical partitioning , 1996, Proceedings of International Conference on Computer Aided Design.

[32]  R. Mac Nally,et al.  Hierarchical partitioning as an interpretative tool in multivariate inference , 1996 .

[33]  F. Harrell,et al.  Prognostic/Clinical Prediction Models: Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors , 2005 .

[34]  Edward J. Rykiel,et al.  Testing ecological models: the meaning of validation , 1996 .

[35]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[36]  Atte Moilanen,et al.  Predicting the Occurrence of Endangered Species in Fragmented Landscapes , 1996, Science.

[37]  Ilkka Hanski,et al.  An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia , 1996 .

[38]  K. Burnham,et al.  Model selection: An integral part of inference , 1997 .

[39]  Jonathan M. Graham,et al.  Autologistic Model of Spatial Pattern of Phytophthora Epidemic in Bell Pepper: Effects of Soil Variables on Disease Presence , 1997 .

[40]  Christian Wissel,et al.  Modelling persistence in dynamic landscapes : lessons from a metapopulation of the grasshopper Bryodema tuberculata , 1997 .

[41]  N. LeRoy Poff,et al.  Landscape Filters and Species Traits: Towards Mechanistic Understanding and Prediction in Stream Ecology , 1997, Journal of the North American Benthological Society.

[42]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[43]  Katherine J. LaJeunesse Connette,et al.  Conservation Biology , 2009, The Quarterly review of biology.

[44]  F. Kienast,et al.  Predicting the potential distribution of plant species in an alpine environment , 1998 .

[45]  David L. Hawksworth,et al.  Biodiversity and Conservation , 2007, Biodiversity & Conservation.

[46]  J. Franklin Predicting the distribution of shrub species in southern California from climate and terrain‐derived variables , 1998 .

[47]  A. McQuarrie,et al.  Regression and Time Series Model Selection , 1998 .

[48]  R. Freckleton,et al.  The Ecological Detective: Confronting Models with Data , 1999 .

[49]  David R. Anderson,et al.  Model Selection and Inference: A Practical Information-Theoretic Approach , 2001 .

[50]  D. Lindenmayer,et al.  The conservation of arboreal marsupials in the montane ash forests of the central highlands of Victoria, south-eastern Australia. VIII. Landscape analysis of the occurrence of arboreal marsupials , 1999 .

[51]  David R. B. Stockwell,et al.  The GARP modelling system: problems and solutions to automated spatial prediction , 1999, Int. J. Geogr. Inf. Sci..

[52]  S. Manel,et al.  Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird , 1999 .

[53]  Roger L. H. Dennis,et al.  Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical and ecological data , 1999 .

[54]  Sovan Lek,et al.  Artificial neural networks as a tool in ecological modelling, an introduction , 1999 .

[55]  I. Hanski,et al.  LOCAL SPECIALIZATION AND LANDSCAPE-LEVEL INFLUENCE ON HOST USE IN AN HERBIVOROUS INSECT , 2000 .

[56]  Simon Ferrier,et al.  Evaluating the predictive performance of habitat models developed using logistic regression , 2000 .

[57]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[58]  David Gutiérrez,et al.  Habitat‐based statistical models for predicting the spatial distribution of butterflies and day‐flying moths in a fragmented landscape , 2000 .

[59]  Jorge X Velasco-Hernández,et al.  Extinction Thresholds and Metapopulation Persistence in Dynamic Landscapes , 2000, The American Naturalist.

[60]  T. Tscharntke,et al.  Butterfly community structure in fragmented habitats , 2000 .

[61]  R. Briers,et al.  Population turnover and habitat dynamics in Notonecta (Hemiptera: Notonectidae) metapopulations , 2000, Oecologia.

[62]  J. Habbema,et al.  Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. , 2000, Statistics in medicine.

[63]  Boris Schröder,et al.  Are habitat models transferable in space and time , 2000 .

[64]  G. De’ath,et al.  CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS , 2000 .

[65]  W. Talloen,et al.  Does the presence of ant nests matter for oviposition to a specialized myrmecophilous Maculinea butterfly? , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[66]  Boris Schröder,et al.  Zwischen Naturschutz und Theoretischer Ökologie : Modelle zur Habitateignung und räumlichen Populationsdynamik für Heuschrecken im Niedermoor , 2000 .

[67]  H. Rusterholz,et al.  Short-term responses of plants and invertebrates to experimental small-scale grassland fragmentation , 2000, Oecologia.

[68]  J. Kerr,et al.  Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Thomas,et al.  Food–plant niche selection rather than the presence of ant nests explains oviposition patterns in the myrmecophilous butterfly genus Maculinea , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[70]  S. Manel,et al.  Evaluating presence-absence models in ecology: the need to account for prevalence , 2001 .

[71]  R. Céréghino,et al.  Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps , 2001 .

[72]  D. Lindenmayer,et al.  Towards a hierarchical framework for modelling the spatial distribution of animals , 2001 .

[73]  A. Hirzel,et al.  Assessing habitat-suitability models with a virtual species , 2001 .

[74]  J. Habbema,et al.  Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. , 2001, Journal of clinical epidemiology.

[75]  Leslie Ries,et al.  Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa , 2001 .

[76]  T. Ricketts The Matrix Matters: Effective Isolation in Fragmented Landscapes , 2001, The American Naturalist.

[77]  B. Goodger,et al.  The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[78]  E. Fleishman,et al.  Modeling and Predicting Species Occurrence Using Broad‐Scale Environmental Variables: an Example with Butterflies of the Great Basin , 2001 .

[79]  Dr Robert Bryant,et al.  Modelling landscape-scale habitat use using GIS and remote sensing : a case study with great bustards , 2001 .

[80]  Boris Schröder,et al.  Habitat models and their transfer for single and multi species groups: a case study of carabids in an alluvial forest , 2001 .

[81]  Ilkka Hanski,et al.  Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly , 2002 .

[82]  T. Dawson,et al.  Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland , 2002 .

[83]  L. Beaumont,et al.  Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change , 2002 .

[84]  J. Oksanen,et al.  Continuum theory revisited: what shape are species responses along ecological gradients? , 2002 .

[85]  Trevor Hastie,et al.  Generalized linear and generalized additive models in studies of species distributions: setting the scene , 2002 .

[86]  Anthony Lehmann,et al.  GRASP: generalized regression analysis and spatial prediction , 2002 .

[87]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[88]  M. Boyce,et al.  Evaluating resource selection functions , 2002 .

[89]  David R. B. Stockwell,et al.  Effects of sample size on accuracy of species distribution models , 2002 .

[90]  Tuuli Toivonen,et al.  Modelling butterfly distribution based on remote sensing data , 2002 .

[91]  G. Quinn,et al.  Experimental Design and Data Analysis for Biologists , 2002 .

[92]  M. Brändle,et al.  Range sizes in butterflies: correlation across scales , 2002 .

[93]  Teja Tscharntke,et al.  SCALE‐DEPENDENT EFFECTS OF LANDSCAPE CONTEXT ON THREE POLLINATOR GUILDS , 2002 .

[94]  J. Friedman Stochastic gradient boosting , 2002 .

[95]  P. Dixon,et al.  Accounting for Spatial Pattern When Modeling Organism- Environment Interactions , 2022 .

[96]  Julian D. Olden,et al.  A comparison of statistical approaches for modelling fish species distributions , 2002 .

[97]  M. Austin Spatial prediction of species distribution: an interface between ecological theory and statistical modelling , 2002 .

[98]  A. Hirzel,et al.  Which is the optimal sampling strategy for habitat suitability modelling , 2002 .

[99]  T. Simons,et al.  Spatial autocorrelation and autoregressive models in ecology , 2002 .

[100]  Gretchen G. Moisen,et al.  Comparing five modelling techniques for predicting forest characteristics , 2002 .

[101]  Roger L. H. Dennis,et al.  A comparison of geographical and neighbourhood models for improving atlas databases. The case of the French butterfly atlas , 2002 .

[102]  J. K. Hill,et al.  Responses of butterflies to twentieth century climate warming: implications for future ranges , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[103]  Z. Fric,et al.  Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale , 2003 .

[104]  Boris Schr Computer-intensive methods in the analysis of species-habitat relationships , 2003 .

[105]  E. Fleishman,et al.  Modelling butterfly species richness using mesoscale environmental variables: model construction and validation for mountain ranges in the Great Basin of western North America , 2003 .

[106]  Ian Phillip Vaughan,et al.  Improving the Quality of Distribution Models for Conservation by Addressing Shortcomings in the Field Collection of Training Data , 2003 .

[107]  A. Hirzel,et al.  Modeling Habitat Suitability for Complex Species Distributions by Environmental-Distance Geometric Mean , 2003, Environmental management.

[108]  Sunil J Rao,et al.  Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis , 2003 .

[109]  Pieter Reitsma,et al.  Educational and Psychological Measurement , 2003 .

[110]  C. Thomas,et al.  Ecological dynamics of extinct species in empty habitat networks. 2. The role of host plant dynamics , 2003 .

[111]  J. Pausas,et al.  Coarse-scale plant species richness in relation to environmental heterogeneity , 2003 .

[112]  Douglas C. Montgomery,et al.  Resampling methods for variable selection in robust regression , 2003, Comput. Stat. Data Anal..

[113]  David A. Bohan,et al.  Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[114]  J. Curry,et al.  CONFRONTING MODELS WITH DATA , 2003 .

[115]  M. Gilbert,et al.  Prediction of butterfly diversity hotspots in Belgium: a comparison of statistically focused and land use‐focused models , 2003 .

[116]  Hans Van Dyck,et al.  Towards a functional resource-based concept for habitat: a butterfly biology viewpoint , 2003 .

[117]  B. A. Hawkins,et al.  Water–energy balance and the geographic pattern of species richness of western Palearctic butterflies , 2003 .

[118]  Brendan A. Wintle,et al.  The Use of Bayesian Model Averaging to Better Represent Uncertainty in Ecological Models , 2003 .

[119]  Mikaela Huntzinger,et al.  Effects of fire management practices on butterfly diversity in the forested western United States , 2003 .

[120]  Ralph Mac Nally,et al.  Validation Tests of Predictive Models of Butterfly Occurrence Based on Environmental Variables , 2003 .

[121]  M. Graham CONFRONTING MULTICOLLINEARITY IN ECOLOGICAL MULTIPLE REGRESSION , 2003 .

[122]  Robert H. Kushler,et al.  Statistical Computing: An Introduction to Data Analysis Using S-PLUS , 2003, Technometrics.

[123]  P. Välimäki,et al.  Migration of the clouded Apollo butterfly Parnassius mnemosyne in a network of suitable habitats – effects of patch characteristics , 2003 .

[124]  L. Crozier Winter warming facilitates range expansion: cold tolerance of the butterfly Atalopedes campestris , 2003, Oecologia.

[125]  R. Dennis,et al.  Gains and losses of French butterflies: tests of predictions, under-recording and regional extinction from data in a new atlas , 2003 .

[126]  Mikko Kuussaari,et al.  RESTORATION OF BUTTERFLY AND MOTH COMMUNITIES IN SEMI-NATURAL GRASSLANDS BY CATTLE GRAZING , 2004 .

[127]  M. Franzén,et al.  Occurrence patterns of butterflies (Rhopalocera) in semi-natural pastures in southeastern Sweden , 2004 .

[128]  Atte Moilanen,et al.  Combining probabilities of occurrence with spatial reserve design , 2004 .

[129]  Ralph Mac Nally,et al.  Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables , 2002, Biodiversity & Conservation.

[130]  Martin Wassen,et al.  Prediction of plant species distribution in lowland river valleys in Belgium: modelling species response to site conditions , 2002, Biodiversity & Conservation.

[131]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[132]  D. Roy,et al.  Host plants and butterfly biology. Do host‐plant strategies drive butterfly status? , 2004 .

[133]  T. Tscharntke,et al.  Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus , 2004 .

[134]  D. Richardson,et al.  Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme , 2020, Biological Conservation.

[135]  Robert Biedermann,et al.  Modelling the spatial dynamics and persistence of the leaf beetle Gonioctena olivacea in dynamic habitats , 2004 .

[136]  E. Matthysen,et al.  Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.) , 2003, Landscape Ecology.

[137]  M. Araújo,et al.  Presence-absence versus presence-only modelling methods for predicting bird habitat suitability , 2004 .

[138]  Boris Schröder,et al.  Habitat selection by the pale-headed brush-finch (Atlapetes pallidiceps) in southern Ecuador: implications for conservation , 2004 .

[139]  M. WallisDeVries A Quantitative Conservation Approach for the Endangered Butterfly Maculinea alcon , 2004 .

[140]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[141]  M. Baguette,et al.  Resource and habitat patches, landscape ecology and metapopulation biology: a consensual viewpoint , 2004 .

[142]  M. Araújo,et al.  An evaluation of methods for modelling species distributions , 2004 .

[143]  S. Weiss,et al.  GLM versus CCA spatial modeling of plant species distribution , 1999, Plant Ecology.

[144]  R. Dennis,et al.  Patch occupancy in Coenonympha tullia (Muller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation , 1997, Journal of Insect Conservation.

[145]  R. M. Nally Regression and model-building in conservation biology, biogeography and ecology: The distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ models , 2000, Biodiversity & Conservation.

[146]  S. Herrando,et al.  Butterfly species richness in the north‐west Mediterranean Basin: the role of natural and human‐induced factors , 2004 .

[147]  A. Lehmann,et al.  Regression models for spatial prediction: their role for biodiversity and conservation , 2002, Biodiversity & Conservation.

[148]  M. Gilbert,et al.  Species richness coincidence: conservation strategies based on predictive modelling , 2005, Biodiversity & Conservation.

[149]  Marianne S. Fred,et al.  Influence of Habitat Quality and Patch Size on Occupancy and Persistence in two Populations of the Apollo Butterfly (Parnassius apollo) , 2003, Journal of Insect Conservation.

[150]  Nicolas Schtickzelle,et al.  Metapopulation viability analysis of the bog fritillary butterfly using RAMAS/GIS , 2004 .

[151]  S. Aviron,et al.  Complementation/supplementation of resources for butterflies in agricultural landscapes , 2004 .

[152]  W. Cramer,et al.  The performance of models relating species geographical distributions to climate is independent of trophic level , 2004 .

[153]  L. P. Koh,et al.  IMPORTANCE OF RESERVES, FRAGMENTS, AND PARKS FOR BUTTERFLY CONSERVATION IN A TROPICAL URBAN LANDSCAPE , 2004 .

[154]  K. Walker,et al.  Assessing habitat quality for butterflies on intensively managed arable farmland , 2004 .

[155]  R. Death,et al.  Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural networks , 2004 .

[156]  L. Fahrig,et al.  Determining the Spatial Scale of Species' Response to Habitat , 2004 .

[157]  J. Askling,et al.  Landscape effects on butterfly assemblages in an agricultural region , 2004 .

[158]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[159]  K. J. Wessels,et al.  An evaluation of the gradsect biological survey method , 1998, Biodiversity & Conservation.

[160]  J. Hortal,et al.  Butterfly species richness in mainland Portugal: predictive models of geographic distribution patterns , 2004 .

[161]  Eric Bauer,et al.  An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.

[162]  Sonia G. Rabasa,et al.  Egg laying by a butterfly on a fragmented host plant: a multi-level approach , 2005 .

[163]  Boris Schröder,et al.  Habitat models and habitat connectivity analysis for butterflies and burnet moths - The example of Zygaena carniolica and Coenonympha arcania , 2005 .

[164]  L. Beaumont,et al.  Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions , 2005 .

[165]  S. Mastrorillo,et al.  Using self-organizing maps to investigate spatial patterns of non-native species , 2005 .

[166]  Mick Eyre,et al.  Distribution of selected macroinvertebrates in a mosaic of temporary and permanent freshwater ponds as explained by autologistic models , 2005 .

[167]  T. Hastie,et al.  Using multivariate adaptive regression splines to predict the distributions of New Zealand ’ s freshwater diadromous fish , 2005 .

[168]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[169]  M. Luoto,et al.  Uncertainty of bioclimate envelope models based on the geographical distribution of species , 2005 .

[170]  M. WallisDeVries,et al.  Using surrogate data in population viability analysis: the case of the critically endangered cranberry fritillary butterfly , 2005 .

[171]  M. Luoto,et al.  New insights into butterfly–environment relationships using partitioning methods , 2005, Proceedings of the Royal Society B: Biological Sciences.

[172]  Dennis D. Murphy,et al.  Using Indicator Species to Predict Species Richness of Multiple Taxonomic Groups , 2005 .

[173]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[174]  J. Bayliss,et al.  The use of probabilistic habitat suitability models for biodiversity action planning , 2005 .

[175]  C. Wiklund,et al.  Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity , 2005 .

[176]  T. Dawson,et al.  Selecting thresholds of occurrence in the prediction of species distributions , 2005 .

[177]  S. Matter,et al.  Predicting Immigration of Two Species in Contrasting Landscapes: Effects of Scale, Patch Size and Isolation , 2005 .

[178]  Barbara Strauss,et al.  The Use of Habitat Models in Conservation of Rare and Endangered Leafhopper Species (Hemiptera, Auchenorrhyncha) , 2005, Journal of Insect Conservation.

[179]  Ian Phillip Vaughan,et al.  The continuing challenges of testing species distribution models , 2005 .

[180]  D. Gutiérrez,et al.  Changes to the elevational limits and extent of species ranges associated with climate change. , 2005, Ecology letters.

[181]  David R. B. Stockwell,et al.  Improving ecological niche models by data mining large environmental datasets for surrogate models , 2005, ArXiv.

[182]  A. Brenning Spatial prediction models for landslide hazards: review, comparison and evaluation , 2005 .

[183]  S. Lavorel,et al.  Niche properties and geographical extent as predictors of species sensitivity to climate change , 2005 .

[184]  T. Tscharntke,et al.  Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly , 2005 .

[185]  Boris Schr,et al.  Constrain to perform: Regularization of habitat models , 2006 .

[186]  Boris Schröder,et al.  Analysis of pattern–process interactions based on landscape models—Overview, general concepts, and methodological issues , 2006 .

[187]  R. Cowling,et al.  Predicting patterns of plant species richness in megadiverse South Africa , 2006 .

[188]  Jane Elith,et al.  Comparing species abundance models , 2006 .

[189]  R. Pearson,et al.  Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar , 2006 .

[190]  Shanshan Wu,et al.  Building statistical models to analyze species distributions. , 2006, Ecological applications : a publication of the Ecological Society of America.

[191]  Mark S. Boyce,et al.  Modelling distribution and abundance with presence‐only data , 2006 .

[192]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[193]  M. Araújo,et al.  Consequences of spatial autocorrelation for niche‐based models , 2006 .

[194]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[195]  H. Poethke,et al.  Habitat suitability models for the conservation of thermophilic grasshoppers and bush crickets—simple or complex? , 2007, Journal of Insect Conservation.

[196]  Ingolf Kühn,et al.  Incorporating spatial autocorrelation may invert observed patterns , 2006 .

[197]  J. Settele,et al.  No Experimental Evidence for Host Ant Related Oviposition in a Parasitic Butterfly , 2006, Journal of Insect Behavior.

[198]  Hon Keung Tony Ng,et al.  Statistics: An Introduction Using R , 2006, Technometrics.

[199]  A. Shapiro,et al.  Building phenological models from presence/absence data for a butterfly fauna. , 2006, Ecological applications : a publication of the Ecological Society of America.

[200]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[201]  J. Kerr,et al.  Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century , 2006 .

[202]  Trevor Hastie,et al.  Making better biogeographical predictions of species’ distributions , 2006 .

[203]  F. Kienast,et al.  The ghost of past species occurrence: improving species distribution models for presence-only data , 2006 .

[204]  Niklaus E. Zimmermann,et al.  Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods , 2006 .

[205]  Antoine Guisan,et al.  Are niche-based species distribution models transferable in space? , 2006 .

[206]  Robert P Freckleton,et al.  Why do we still use stepwise modelling in ecology and behaviour? , 2006, The Journal of animal ecology.

[207]  B. Schröder,et al.  Connectivity compensates for low habitat quality and small patch size in the butterfly Cupido minimus , 2008, Ecological Research.

[208]  Barbara Strauss,et al.  Evaluating temporal and spatial generality: How valid are species–habitat relationship models? , 2007 .

[209]  H. Dyck,et al.  When functional habitat does not match vegetation types: A resource-based approach to map butterfly habitat , 2007 .

[210]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[211]  H. Van Dyck,et al.  Transferability of Species Distribution Models: a Functional Habitat Approach for Two Regionally Threatened Butterflies , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[212]  Jennifer A. Miller,et al.  Incorporating spatial dependence in predictive vegetation models , 2007 .

[213]  B. Schröder,et al.  The generality of habitat suitability models: A practical test with two insect groups , 2007 .

[214]  M. Kleyer,et al.  Integrated Grid Based Ecological and Economic (INGRID) landscape model - A tool to support landscape management decisions , 2007, Environ. Model. Softw..

[215]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[216]  M. Austin Species distribution models and ecological theory: A critical assessment and some possible new approaches , 2007 .

[217]  J Elith,et al.  A working guide to boosted regression trees. , 2008, The Journal of animal ecology.

[218]  C. Dormann,et al.  Static species distribution models in dynamically changing systems: how good can predictions really be? , 2009 .

[219]  E. Steyerberg,et al.  [Regression modeling strategies]. , 2011, Revista espanola de cardiologia.

[220]  W. Pan Bootstrap Model Selection in Generalized Linear Models , 2011 .