Volume rendering with multidimensional peak finding

Peak finding provides more accurate classification for direct volume rendering by sampling directly at local maxima in a transfer function, allowing for better reproduction of high-frequency features. However, the 1D peak finding technique does not extend to higherdimensional classification. In this work, we develop a new method for peak finding with multidimensional transfer functions, which looks for peaks along the image of the ray. We use piecewise approximations to dynamically sample in transfer function space between world-space samples. As with unidimensional peak finding, this approach is useful for specifying transfer functions with greater precision, and for accurately rendering noisy volume data at lower sampling rates. Multidimensional peak finding produces comparable image quality with order-of-magnitude better performance, and can reproduce features omitted entirely by standard classification. With no precomputation or storage requirements, it is an attractive alternative to preintegration for multidimensional transfer functions.

[1]  H. Im,et al.  Combined pdf-sdf approach to partially premixed turbulent combustion , 2000 .

[2]  Xiaolin Wu An efficient antialiasing technique , 1991, SIGGRAPH.

[3]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[4]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[5]  Thomas Ertl,et al.  A two-step approach for interactive pre-integrated volume rendering of unstructured grids , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[6]  Daniel Weiskopf,et al.  A Spectral Analysis of Function Composition and its Implications for Sampling in Direct Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[7]  Hans Hagen,et al.  Visualization of Coherent Structures in Transient 2D Flows , 2009, Topology-Based Methods in Visualization II.

[8]  G. Kindlmann Transfer Functions in Direct Volume Rendering : Design , Interface , Interaction , 2002 .

[9]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[10]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[11]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[12]  Markus Hadwiger,et al.  Real‐Time Ray‐Casting and Advanced Shading of Discrete Isosurfaces , 2005, Comput. Graph. Forum.

[13]  David H. Laidlaw,et al.  Geometric model extraction from magnetic resonance volume data , 1996 .

[14]  G. Bryan,et al.  Simulating Cosmological Evolution with Enzo , 2007, 0705.1556.

[15]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[16]  Lars Linsen,et al.  Surface Extraction from Multi-field Particle Volume Data Using Multi-dimensional Cluster Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[17]  Paul A. Navrátil,et al.  Visualization of Cosmological Particle-Based Datasets , 2007, IEEE Transactions on Visualization and Computer Graphics.

[18]  Martin Kraus,et al.  Pre-Integrated Volume Rendering for Multi-Dimensional Transfer Functions , 2008, VG/PBG@SIGGRAPH.

[19]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[20]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[21]  Ulrich Neumann,et al.  Accelerating Volume Reconstruction With 3D Texture Hardware , 1994 .

[22]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[23]  Hans Hagen,et al.  Volume Ray Casting with Peak Finding and Differential Sampling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[24]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[25]  Alexander Rice,et al.  Real-Time Volume Rendering of Four Channel Data Sets , 2004, IEEE Visualization 2004.

[26]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for isosurface rendering , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[27]  Thomas Ertl,et al.  Smart Hardware-Accelerated Volume Rendering , 2003, VisSym.

[28]  Martin Kraus,et al.  Scale-invariant volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[29]  Charles D. Hansen,et al.  Visualization of intricate flow structures for vortex breakdown analysis , 2004, IEEE Visualization 2004.

[30]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[31]  Daniel Weiskopf,et al.  Direct Interval Volume Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[32]  Milos Srámek,et al.  Fast surface rendering from raster data by voxel traversal using chessboard distance , 1994, Proceedings Visualization '94.

[33]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..