Solutions of the optimal feedback control problem using Hamiltonian dynamics and generating functions

We show that the optimal cost function that satisfies the Hamilton-Jacobi-Bellman (HJB) equation is a generating function for a class of canonical transformations for the Hamiltonian dynamical system defined by the necessary conditions for optimality. This result allows us to circumvent the final time singularity in the HJB equation for a finite time problem, and allows us to analytically construct a nonlinear optimal feedback control and cost function that satisfies the HJB equation for a large class of dynamical systems. It also establishes that the optimal cost function can be computed from a large class of solutions to the Hamilton-Jacobi (HJ) equation, many of which do not have singular boundary conditions at the terminal state.

[1]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[2]  Richard M. Murray,et al.  Finite-horizon optimal control and stabilization of time-scalable systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[3]  W. F. Powers,et al.  Canonical transformation applications to optimal trajectory analysis. , 1969 .

[4]  D. Lukes Optimal Regulation of Nonlinear Dynamical Systems , 1969 .

[5]  Harvey Thomas Banks,et al.  Feedback Control Methodologies for Nonlinear Systems , 2000 .

[6]  J. Burghart A technique for suboptimal feedback control of nonlinear systems , 1969 .

[7]  R. Beard,et al.  Successive collocation: an approximation to optimal nonlinear control , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[8]  L. G. Clark,et al.  An Approach to Sub-optimal Feedback Control of Non-linear Systems , 1967 .

[9]  Randal W. Beard,et al.  Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation , 1997, Autom..

[10]  George N. Saridis,et al.  An Approximation Theory of Optimal Control for Trainable Manipulators , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  J. Cloutier State-dependent Riccati equation techniques: an overview , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[12]  Daniel J. Scheeres,et al.  Formation Flight with Generating Functions: Solving the Relative Boundary Value Problem , 2002 .

[13]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[14]  Wei-Min Lu,et al.  Nonlinear optimal control: alternatives to Hamilton-Jacobi equation , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[15]  Mihai Popescu Applications of Canonical Transformations in Optimizing Orbital Transfers , 1997 .

[16]  R. C. Durbeck,et al.  An approximation technique for suboptimal control , 1965 .

[17]  Michael Athans,et al.  Optimal Control , 1966 .

[18]  Baudouin Fraeijs de Veubeke Canonical transformations and the thrust-coast-thrust optimal transfer problem , 1965 .

[19]  M. Corless,et al.  An ℒ2 disturbance attenuation solution to the nonlinear benchmark problem , 1998 .

[20]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .