The role of microorganisms in gold processing and recovery—A review

Abstract With a projected steady decline of gold ore grade in mineral resources, mining applications enabling efficient metal extraction from low-grade ores are of increasing interest to the minerals industry. Microbial processes may provide one such solution since they can participate in the biogeochemical cycling of gold in many direct and indirect ways. This review examines current literature on the role of microorganisms in gold processing and recovery. The review covers aspects such as the biotechnical pre-treatment of gold ores and concentrates, microbially catalysed permeability enhancement of ore bodies, gold solubilisation through biooxidation and complexation with biogenic lixiviants, and microbially mediated gold recovery and loss from leach liquors.

[1]  C. L. Brierley,et al.  Bioleaching review part B: , 2003, Applied Microbiology and Biotechnology.

[2]  S. Brantley,et al.  Chemical weathering rates of silicate minerals; an overview , 1995 .

[3]  T. Kimoto,et al.  Determination and distribution of iodide- and total-iodine in the North Pacific Ocean - by using a new automated electrochemical method , 1989 .

[4]  A. Mucci,et al.  Gold speciation in natural waters: II. The importance of organic complexing - Experiments with some simple model ligands , 1990 .

[5]  J. Trevors,et al.  Micro-Organism-Gold Interactions , 1998, Biometals.

[6]  Anirban Roy Choudhury,et al.  Exploitation of marine bacteria for production of gold nanoparticles , 2012, Microbial Cell Factories.

[7]  M. Kalin,et al.  Ecological engineering methods for acid mine drainage treatment of coal wastes , 1991 .

[8]  B. Schippers,et al.  Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation , 1987 .

[9]  S. Amachi Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. , 2008, Microbes and environments.

[10]  C. L. Brierley,et al.  How will biomining be applied in future , 2008 .

[11]  K. Timmis,et al.  Acidiplasma aeolicum gen. nov., sp. nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. nov. , 2009, International journal of systematic and evolutionary microbiology.

[12]  K. Coupland,et al.  Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. , 2008, FEMS microbiology letters.

[13]  H. Cypionka,et al.  Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans , 1990, Archives of Microbiology.

[14]  G. Gadd,et al.  Fungal involvement in bioweathering and biotransformation of rocks and minerals , 2003, Mineralogical Magazine.

[15]  K. Nagaoka,et al.  Methanoculleus bourgensis, Methanoculleus olentangyi and Methanoculleus oldenburgensis are subjective synonyms. , 2003, International journal of systematic and evolutionary microbiology.

[16]  K. Bosecker,et al.  Bioleaching: metal solubilization by microorganisms , 1997 .

[17]  G. Southam,et al.  The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex , 2005 .

[18]  Pauliina Nurmi Oxidation and Control of Iron in Bioleaching Solutions , 2009 .

[19]  A. Belyi,et al.  Biooxidation of Refractory Gold Sulfide Concentrate of Olympiada Deposit , 2009 .

[20]  P. Bezdička,et al.  Biodestruction and deferritization of quartz sands by Bacillus species , 2003 .

[21]  Lifeng Zhang,et al.  Metallurgical recovery of metals from electronic waste: a review. , 2008, Journal of hazardous materials.

[22]  W. Fetzer Humic acids and true organic acids as solvents of minerals , 1946 .

[23]  S. Ndlovu Biohydrometallurgy for sustainable development in the African minerals industry , 2008 .

[24]  P. Gwynne Microbiology: There's gold in them there bugs , 2013, Nature.

[25]  S. Wood The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V) , 1996 .

[26]  Ashraf Ibrahim,et al.  Gold biomineralization by a metallophore from a gold-associated microbe. , 2013, Nature chemical biology.

[27]  H. Nishikawa,et al.  Effects of cyanide and dissolved oxygen concentration on biological Au recovery. , 2006, Journal of biotechnology.

[28]  B. Bunker,et al.  An experimental study of Au removal from solution by non-metabolizing bacterial cells and their exudates , 2012 .

[29]  D. Wadden,et al.  The In-Place Leaching of Uranium at Denison Mines , 1985 .

[30]  David M. Muir,et al.  Thiosulfate leaching of gold—A review , 2001 .

[31]  M. Faramarzi,et al.  Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. , 2006, FEMS microbiology letters.

[32]  Pragna Bhakta,et al.  Heap bio-oxidation and gold recovery at newmont mining: First-year results , 2002 .

[33]  P. Franzmann,et al.  The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching , 2000 .

[34]  P. Margalith,et al.  Iodide oxidation by Pseudomonas iodooxidans. , 1974, The Journal of applied bacteriology.

[35]  R. Gozlan Isolation of iodine-producing bacteria from aquaria , 2005, Antonie van Leeuwenhoek.

[36]  Yongming Luo,et al.  Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture , 2006, Environmental geochemistry and health.

[37]  J. Shapter,et al.  Biomineralization of gold in biofilms of Cupriavidus metallidurans. , 2013, Environmental science & technology.

[38]  D. Craw,et al.  The geomicrobiology of gold , 2007, The ISME Journal.

[39]  G. Luther,et al.  Sub-surface iodide maxima: evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon , 1997 .

[40]  M. Faramarzi,et al.  Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. , 2004, Journal of biotechnology.

[41]  S. Karthikeyan,et al.  Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. , 2002, Environmental microbiology.

[42]  G. Gadd,et al.  Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. , 1997, FEMS microbiology reviews.

[43]  Satyajyoti Senapati,et al.  Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species , 2003 .

[44]  P. Castric Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. , 1975, Canadian journal of microbiology.

[45]  P. Brewer,et al.  The marine chemistry of iodine in anoxic basins , 1977 .

[46]  D. Lovley,et al.  Microbial Reduction of Iodate , 1997 .

[47]  Wu Jingwei,et al.  An experimental study on gold solubility in amino acid solution and its geological significance , 1996 .

[48]  Mariekie Gericke,et al.  A Mintek perspective of the past 25 years in minerals bioleaching , 2009 .

[49]  Henry L. Ehrlich,et al.  GEOMICROBIOLOGY: ITS SIGNIFICANCE FOR GEOLOGY , 1998 .

[50]  F. A. Perrot,et al.  Evaluation of submerged bio-oxidation concept for refractory gold ores , 2014 .

[51]  Y. Kamagata,et al.  Microbial participation in iodine volatilization from soils. , 2003, Environmental science & technology.

[52]  Y. Ting,et al.  Gold Bioleaching of Electronic Waste by Cyanogenic Bacteria and its Enhancement with Bio-Oxidation , 2009 .

[53]  W. E. Baker The role of humic acid in the transport of gold , 1978 .

[54]  R. Kumar,et al.  Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. , 2003 .

[55]  W. Sand,et al.  Sulfur chemistry, biofilm, and the (in)direct attack mechanism — a critical evaluation of bacterial leaching , 1995, Applied Microbiology and Biotechnology.

[56]  Kelly P. Nevin,et al.  Reductive Precipitation of Gold by Dissimilatory Fe(III)-Reducing Bacteria andArchaea , 2001, Applied and Environmental Microbiology.

[57]  R. O. Scott,et al.  SOLUBILIZATION OF MINERALS AND RELATED MATERIALS BY 2‐KETOGLUCONIC ACID‐PRODUCING BACTERIA , 1963 .

[58]  J. Pradhan,et al.  Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp , 2012, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[59]  D. Kirchman,et al.  Enhanced dissolution of silicate minerals by bacteria at near-neutral pH , 1994, Microbial Ecology.

[60]  D. Rawlings,et al.  Biomineralization of metal-containing ores and concentrates. , 2003, Trends in biotechnology.

[61]  K. Hallberg,et al.  Carbon, iron and sulfur metabolism in acidophilic micro-organisms. , 2009, Advances in microbial physiology.

[62]  R. Bachofen,et al.  Microbial recovery of metals from solids , 1997 .

[63]  Z. Stránský,et al.  Thiosulfate production from cystine by the keratinolytic prokaryote Streptomyces fradiae , 1988, Archives of Microbiology.

[64]  Mariekie Gericke,et al.  Microbial production of gold nanoparticles , 2006 .

[65]  G. Southam,et al.  The Deposition of Elemental Gold from Gold(I)-Thiosulfate Complexes Mediated by Sulfate-Reducing Bacterial Conditions , 2007 .

[66]  Y. Kamagata,et al.  Bacteria Mediate Methylation of Iodine in Marine and Terrestrial Environments , 2001, Applied and Environmental Microbiology.

[67]  Helmut Brandl,et al.  Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi , 2001 .

[68]  F. Reith EVIDENCE FOR A MICROBIALLY MEDIATED BIOGEOCHEMICAL CYCLE OF GOLD - A LITERATURE REVIEW , 2003 .

[69]  K. A. Matis,et al.  A fundamental rotating disk study of gold dissolution in iodine-iodide solutions , 1993 .

[70]  Mohammad Ali Faramarzi,et al.  Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms , 2008 .

[71]  D. B. Johnson,et al.  Acidophilic microbial communities: Candidates for bioremediation of acidic mine effluents , 1995 .

[72]  T. Tran,et al.  Gold dissolution in iodide electrolytes , 1991 .

[73]  F. Reith,et al.  Biomineralization of Gold: Biofilms on Bacterioform Gold , 2006, Science.

[74]  Henry L. Ehrlich,et al.  HOW MICROBES INFLUENCE MINERAL GROWTH AND DISSOLUTION , 1996 .

[75]  Ning Gu,et al.  Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata , 2007 .

[76]  D. Mishra,et al.  Current Research Trends of Microbiological Leaching for Metal Recovery from Industrial Wastes , 2010 .

[77]  Rakesh Kumar,et al.  Biodeterioration of Stone in Tropical Environments: An Overview , 1999 .

[78]  S. Langille,et al.  The polar polysaccharide capsule of Hyphomonas adhaerens MHS-3 has a strong affinity for gold , 2001, Journal of Industrial Microbiology and Biotechnology.

[79]  C. L. Brierley,et al.  Present and future commercial applications of biohydrometallurgy , 2001 .

[80]  F. Acevedo,et al.  Effect of CO2 air enrichment in the biooxidation of a refractory gold concentrate by Sulfolobus metallicus adapted to high pulp densities , 2009 .

[81]  Frederick S. Colwell,et al.  Calcium Carbonate Precipitation by Ureolytic Subsurface Bacteria , 2000 .

[82]  M. Olsson,et al.  Rock-eating fungi , 1997, Nature.

[83]  Y. Muramatsu,et al.  Effects of Microorganisms on the Fate of Iodine in the Soil Environment , 1999 .

[84]  C. Knowles,et al.  Cyanide Production and Degradation During Growth of Chromobacterium violaceum , 1978 .

[85]  B. D. Pandey,et al.  Evaluation of bioleaching factors on gold recovery from ore by cyanide-producing bacteria , 2013 .

[86]  Hitoshi Tomaru,et al.  Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: Implications for the origin of gas hydrates , 2007 .

[87]  Marina Lotti,et al.  Laboratory evolution of copper tolerant yeast strains , 2012, Microbial Cell Factories.

[88]  P. Margalith,et al.  Iodide oxidation by a marine bacterium. , 1973, The Journal of applied bacteriology.

[89]  A. Shilova,et al.  Gold helps bacteria to oxidize methane. , 2002, Journal of inorganic biochemistry.

[90]  E. Wang,et al.  Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin , 2007 .

[91]  Carla M. Zammit,et al.  The future of biotechnology for gold exploration and processing , 2012 .

[92]  S. Lee,et al.  Towards systems metabolic engineering of microorganisms for amino acid production. , 2008, Current opinion in biotechnology.

[93]  D. Labeda Transfer of the Type Strain of Streptomyces erythraeus (Waksman 1923) Waksman and Henrici 1948 to the Genus Saccharopolyspora Lacey and Goodfellow 1975 as Saccharopolyspora erythraea sp. nov., and Designation of a Neotype Strain for Streptomyces erythraeus , 1987 .

[94]  Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). , 2002, International journal of systematic and evolutionary microbiology.

[95]  B. D. Pandey,et al.  Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium , 2011 .

[96]  Frederick S. Colwell,et al.  Subscribed Content Calcium Carbonate Precipitation by Ureolytic Subsurface Bacteria , 2000 .

[97]  T. R. Clark,et al.  Biogenic production of cyanide and its application to gold recovery , 2001, Journal of Industrial Microbiology and Biotechnology.

[98]  G. A. Bird,et al.  Distribution coefficients, Kds, for iodide in Canadian Shield Lake sediments under oxic and anoxic conditions , 1997 .

[99]  P. Bos,et al.  Anaerobic Growth of Thiobacillus ferrooxidans , 1992, Applied and environmental microbiology.

[100]  Y. Kamagata,et al.  Isolation of Iodide-Oxidizing Bacteria from Iodide-Rich Natural Gas Brines and Seawaters , 2005, Microbial Ecology.

[101]  Sulabha K. Kulkarni,et al.  Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589 , 2009 .

[102]  A. Schippers MICROORGANISMS INVOLVED IN BIOLEACHING AND NUCLEIC ACID-BASED MOLECULAR METHODS FOR THEIR IDENTIFICATION AND QUANTIFICATION , 2007 .

[103]  W. Sand,et al.  Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur , 1999, Applied and Environmental Microbiology.

[104]  Nelson Belzile,et al.  A review on pyrrhotite oxidation , 2004 .

[105]  Å. Sandström,et al.  Use of mesalime and electric arc furnace (EAF) dust as neutralising agents in biooxidation and their effects on gold recovery in subsequent cyanidation , 2010 .

[106]  G. Southam,et al.  Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex , 2006 .

[107]  T. Fujii,et al.  Hydrogen Peroxide-Dependent Uptake of Iodine by Marine Flavobacteriaceae Bacterium Strain C-21 , 2007, Applied and Environmental Microbiology.

[108]  S. Harrison,et al.  Dynamic Evolution of the Microbial Community in BIOX Leaching Tanks , 2013 .

[109]  P. Rose,et al.  A continuous process for the biological treatment of heavy metal contaminated acid mine water , 1999 .

[110]  D. Johnson,et al.  Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects , 2012, Front. Microbio..

[111]  J. Shapter,et al.  Effect of the cyanide-producing bacterium Chromobacterium violaceum on ultraflat Au surfaces , 2009 .

[112]  M. Muravyov,et al.  Two-step oxidation of a refractory gold-bearing sulfidic concentrate and the effect of organic nutrients on its biooxidation , 2013 .

[113]  Yuko Watanabe,et al.  Dissimilatory Iodate Reduction by Marine Pseudomonas sp. Strain SCT , 2007, Applied and Environmental Microbiology.

[114]  A. D. Russell,et al.  Antiseptics and Disinfectants: Activity, Action, and Resistance , 2001, Clinical Microbiology Reviews.

[115]  A. Gorbushina,et al.  The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass , 2005 .

[116]  Stefan Vogt,et al.  Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans , 2009, Proceedings of the National Academy of Sciences.

[117]  P. C. van Aswegen,et al.  Advances in the application of the BIOX® Process for refractory gold ores , 1999 .

[118]  V. S. Podgorskiĭ,et al.  ROLE OF BACILLUS MUCILAGINOSUS POLYSACCHARIDE IN DEGRADATION OF SILICATE MINERALS , 1990 .

[119]  Gordon A. Robb,et al.  Acid Drainage from Mines , 1995 .

[120]  B. Kay,et al.  Microbial participation in iodide removal from solution by organic soils. , 1989 .

[121]  T. A. Pivovarova,et al.  Percolation bioleaching of copper and zinc and gold recovery from flotation tailings of the sulfide complex ores of the Ural region, Russia , 2012 .

[122]  W. Fetzer Transportation of gold by organic solutions , 1934 .

[123]  J. Deventer,et al.  The role of amino acids in the thiosulphate leaching of gold , 2011 .

[124]  H. Inoue,et al.  Production of free and organic iodine by Roseovarius spp. , 2003, FEMS microbiology letters.

[125]  K. LeVier,et al.  Solution chemistry factors for gold thiosulfate heap leaching , 2003 .

[126]  R. Martens,et al.  The contribution of microbial biomass to the adsorption of radioiodide in soils , 1992 .

[127]  P. Franzmann,et al.  Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap , 2006, Extremophiles.

[128]  D. Rawlings,et al.  Heavy metal mining using microbes. , 2002, Annual review of microbiology.

[129]  S. Nagpal,et al.  A mathematical model for the bacterial oxidation of a sulfide ore concentrate , 1994, Biotechnology and bioengineering.

[130]  T. Kondrat'eva,et al.  Two-stage bacterial-chemical oxidation of refractory gold-bearing sulfidic concentrates , 2010 .

[131]  F. Reith,et al.  Effect of resident microbiota on the solubilization of gold in soil from the Tomakin Park Gold Mine, New South Wales, Australia , 2006 .

[132]  F. Reith,et al.  Biomediation of calcrete at the gold anomaly of the Barns prospect, Gawler Craton, South Australia , 2007 .