Dendritic polyglycerol: a new versatile biocompatible-material.

Polyglycerol represents the first hyperbranched polymer that can be prepared in a controlled synthesis. It is characterized by the combination of a stable, biocompatible polyether scaffold, high-end group functionality and a compact, well-defined dendrimer-like architecture. These characteristics can be used to generate new materials properties and for biomedical applications to molecularly amplify or multiply effects or to create extremely high local concentrations of drugs, molecular labels, or probe moieties. Therefore, dendritic polyglycerols are expected to lead to new strategies for 'molecular medicine'. In this brief summary, the current state of the art in polyglycerol research is given, focusing on applications in life sciences.

[1]  H. Frey,et al.  Degree of branching in hyperbranched polymers. 3 Copolymerization of ABm-monomers with AB and ABn-monomers , 1999 .

[2]  Masato Suzuki,et al.  New Ring-Opening Polymerization via a π-Allylpalladium Complex. 5. Multibranching Polymerization of Cyclic Carbamate To Produce Hyperbranched Dendritic Polyamine , 1998 .

[3]  R. Barth,et al.  The Chemistry of Neutron Capture Therapy. , 1998, Chemical reviews.

[4]  Frey,et al.  Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. , 1999, Angewandte Chemie.

[5]  Jean M. J. Fréchet,et al.  Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. , 2001, Angewandte Chemie.

[6]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[7]  R. Mülhaupt,et al.  Hyperbranched Polyether−Polyols Based on Polyglycerol: Polarity Design by Block Copolymerization with Propylene Oxide , 2000 .

[8]  J. Fréchet,et al.  A Convergent Route to Novel Aliphatic Polyether Dendrimers , 1998 .

[9]  H. Frey,et al.  Hyperbranched Polymers Prepared via the Core-Dilution/Slow Addition Technique: Computer Simulation of Molecular Weight Distribution and Degree of Branching , 1998 .

[10]  G. Adam,et al.  Dynamic contrast‐enhanced MR imaging of the upper abdomen: Enhancement properties of gadobutrol, gadolinium‐DTPA‐polylysine, and gadolinium‐DTPA‐cascade‐polymer , 1994, Magnetic resonance in medicine.

[11]  Rolf Mülhaupt,et al.  Chiral Hyperbranched Dendron Analogues , 2000 .

[12]  Martin W. Brechbiel,et al.  MOLECULAR DYNAMICS OF ION-CHELATE COMPLEXES ATTACHED TO DENDRIMERS , 1996 .

[13]  F. Vögtle,et al.  Dendrimers: From Design to Application-A Progress Report. , 1999, Angewandte Chemie.

[14]  R. Larossa,et al.  Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. , 2000, Biomacromolecules.

[15]  R. Mülhaupt,et al.  Functional Poly(ethylene oxide) Multiarm Star Polymers: Core-First Synthesis Using Hyperbranched Polyglycerol Initiators , 2000 .

[16]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[17]  H. Frey,et al.  Role of cyclization in the synthesis of hyperbranched aliphatic polyesters , 2000 .

[18]  Robert H. E. Hudson,et al.  Nucleic acid dendrimers: novel biopolymer structures , 1993 .

[19]  R. Mülhaupt,et al.  Multi-arm star block copolymers based on ɛ-caprolactone with hyperbranched polyglycerol core , 2000 .

[20]  S. Hecht,et al.  Dendritisch eingeschlossene aktive Zentren: Anwendung des Isolationsprinzips der Natur in der Biomimetik und den Materialwissenschaften , 2001 .

[21]  R. Mülhaupt,et al.  MOLEKULARE NANOKAPSELN AUF DER BASIS VON AMPHIPHILEN HYPERVERZWEIGTEN POLYGLYCERINEN , 1999 .

[22]  F. Vögtle,et al.  Dendrimere: vom Design zur Anwendung – ein Fortschrittsbericht , 1999 .

[23]  Harold Weintraub,et al.  DNA Dendrimers Localize Myod mRNA in Presomitic Tissues of the Chick Embryo , 2000, The Journal of cell biology.

[24]  W. Prensky,et al.  Dendritic nucleic acid structures. , 1997, Journal of theoretical biology.

[25]  R. Mülhaupt,et al.  Hyperbranched Polyether Polyols: A Modular Approach to Complex Polymer Architectures , 2000 .

[26]  F. Szoka,et al.  Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. , 1993, Bioconjugate chemistry.

[27]  R. Brasch,et al.  MRI of acute myocardial ischemia: Comparing a new contrast agent, Gd‐DTPA‐24‐cascade‐polymer, with Gd‐DTPA , 1999, Journal of magnetic resonance imaging : JMRI.

[28]  R. Mülhaupt,et al.  Synthesis of poly(glycerol)‐block‐poly(methyl acrylate) multi‐arm star polymers , 2000 .

[29]  R. Haag Dendrimers and hyperbranched polymers as high-loading supports for organic synthesis. , 2001, Chemistry.

[30]  M. Hawthorne,et al.  Applications of Radiolabeled Boron Clusters to the Diagnosis and Treatment of Cancer. , 1999, Chemical reviews.

[31]  Masato Suzuki,et al.  Multibranching polymerization: palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine , 1992 .

[32]  G. M. Whitesides,et al.  Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren , 1998 .

[33]  R. Haag,et al.  Copolymers of Glycidol and Glycidyl Ethers: Design of Branched Polyether Polyols by Combination of Latent Cyclic AB2 and ABR Monomers , 2000 .

[34]  R. Mülhaupt,et al.  Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization , 1999 .

[35]  C. Frost,et al.  [(PPh3)Ag(CB11H6Y6)] (Y = H, Br): highly active, selective and recyclable Lewis acids for a hetero-Diels-Alder reaction. , 2001, Chemical communications.

[36]  R. Wilson,et al.  Overview of the preparation, use and biological studies on polyglycerol polyricinoleate (PGPR). , 1998, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[37]  P C Lauterbur,et al.  Dendrimer‐based metal chelates: A new class of magnetic resonance imaging contrast agents , 1994, Magnetic resonance in medicine.

[38]  H. Frey,et al.  Preparation of Catalytically Active Palladium Nanoclusters in Compartments of Amphiphilic Hyperbranched Polyglycerols , 2000 .

[39]  J. Fréchet,et al.  Convergent synthesis and ‘surface’ functionalization of a dendritic analog of poly(ethylene glycol) , 1999 .

[40]  F. Szoka,et al.  In vitro gene delivery by degraded polyamidoamine dendrimers. , 1996, Bioconjugate chemistry.

[41]  R. Haag,et al.  An Approach to Glycerol Dendrimers and Pseudo-Dendritic Polyglycerols , 2000 .

[42]  H. Frey Degree of branching in hyperbranched polymers. 2. Enhancement of the db: Scope and limitations , 1997 .

[43]  Holger Frey,et al.  Degree of branching in hyperbranched polymers , 1997 .

[44]  E. W. Meijer,et al.  Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[45]  H. Frey,et al.  Controlling the growth of polymer trees: concepts and perspectives for hyperbranched polymers. , 2000, Chemistry.

[46]  R. Haag,et al.  An Approach to Core−Shell-Type Architectures in Hyperbranched Polyglycerols by Selective Chemical Differentiation , 2000 .

[47]  E. Meijer,et al.  Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.

[48]  R. Wilson,et al.  The fate of ingested glyceran esters of condensed castor oil fatty acids [polyglycerol polyricinoleate (PGPR)] in the rat. , 1998, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.