Examination of the surrogate ratio method for the determination of the Zr 93 ( n , γ ) Zr 94 cross section with Zr 90 , 92 ( O 18 , O 16 ) Zr 92 , 94 reactions

The relative $\ensuremath{\gamma}$-decay probability ratios of the neutron resonance states in $^{94}\mathrm{Zr}$ and $^{92}\mathrm{Zr}$ populated via two-neutron transfer reactions, $^{92}\mathrm{Zr}(^{18}\mathrm{O},^{16}\mathrm{O})^{94}\mathrm{Zr}$ and $^{90}\mathrm{Zr}(^{18}\mathrm{O},^{16}\mathrm{O})^{92}\mathrm{Zr}$, have been measured to test the validity of the surrogate ratio method (SRM) in determining the $(n, \ensuremath{\gamma})$ reaction cross section. The cross sections of the $^{93}\mathrm{Zr}(n,\ensuremath{\gamma})^{94}\mathrm{Zr}$ reaction are derived from the experimentally obtained ratios and the cross sections of the $^{91}\mathrm{Zr}(n,\ensuremath{\gamma})^{92}\mathrm{Zr}$ reaction in the equivalent neutron energy range of ${E}_{n}=0\text{--}8\phantom{\rule{0.16em}{0ex}}\mathrm{MeV}$. The deduced cross sections of $^{93}\mathrm{Zr}(n,\ensuremath{\gamma})^{94}\mathrm{Zr}$ reaction agree with the directly measured ones in the low-energy region, and with the evaluated ENDF/B-VII.1 data at higher energies of ${E}_{n}g3\phantom{\rule{0.16em}{0ex}}\mathrm{MeV}$. The agreement supports the concept of the SRM method to indirectly determine the $(n,\ensuremath{\gamma})$ reaction cross sections.

[1]  A. Davis,et al.  THE IMPACT OF UPDATED Zr NEUTRON-CAPTURE CROSS SECTIONS AND NEW ASYMPTOTIC GIANT BRANCH MODELS ON OUR UNDERSTANDING OF THE S PROCESS AND THE ORIGIN OF STARDUST , 2013, 1311.2660.

[2]  L. Mathieu,et al.  Study of the surrogate-reaction method applied to neutron-induced capture cross sections , 2012 .

[3]  J. Escher,et al.  Compound-nuclear reaction cross sections from surrogate measurements , 2012 .

[4]  T. Ross,et al.  Surrogate measurement of the {sup 238}Pu(n,f) cross section , 2011 .

[5]  W. Aoki,et al.  The s process: Nuclear physics, stellar models, and observations , 2010, 1012.5218.

[6]  L. Bernstein,et al.  Surrogate ratio methodology for the indirect determination of neutron capture cross sections , 2010 .

[7]  S. R. Lesher,et al.  Measurement of γ -emission Branching Ratios for 154,156,158 Gd Compound Nuclei: Tests of Surrogate Nuclear Reaction Approximations for ( n,γ ) Cross Sections , 2010 .

[8]  O. Serot,et al.  Neutron-induced fission cross sections of short-lived actinides with the surrogate reaction method , 2010 .

[9]  J. Escher,et al.  Cross sections for neutron capture from surrogate measurements: An examination of Weisskopf-Ewing and ratio approximations , 2010, 1002.2014.

[10]  O. Iwamoto,et al.  Verification of the surrogate ratio method , 2010, 1001.5114.

[11]  S. R. Lesher,et al.  Benchmarking a surrogate reaction for neutron capture , 2010 .

[12]  Steven Ragnar Stroberg Indirect determination of the 230Th(n, f ) and 231Th(n, f ) cross sections for thorium-based nuclear energy systems , 2009 .

[13]  S. R. Lesher,et al.  Relative {sup 235}U(n,{gamma}) and (n,f) cross sections from {sup 235}U(d,p{gamma}) and (d,pf) , 2009 .

[14]  P. Fallon,et al.  Surrogate ratio method in the actinide region using the ({alpha},{alpha}{sup '}f) reaction , 2009 .

[15]  R. Choudhury,et al.  Determination of the {sup 233}Pa(n,f) reaction cross section from 11.5 to 16.5 MeV neutron energy by the hybrid surrogate ratio approach , 2008 .

[16]  L. Bernstein,et al.  Determination of (n,{gamma}) cross sections in the rare-earth region using the surrogate ratio method , 2008 .

[17]  S. R. Lesher,et al.  Absolute and relative surrogate measurements of the 236U(n,f) cross section as a probe of angular momentum effects , 2007 .

[18]  J. Escher,et al.  Determining neutron capture cross sections via the surrogate reaction technique , 2007, nucl-th/0703097.

[19]  L. The,et al.  s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars , 2006, astro-ph/0609788.

[20]  C. Grosjean,et al.  Determination of the 233Pa(n, γ) capture cross section up to neutron energies of 1 MeV using the transfer reaction 232Th(3He, p)234Pa∗ , 2006 .

[21]  J. Escher,et al.  Determining (n,f) cross sections for actinide nuclei indirectly: Examination of the surrogate ratio method , 2006 .

[22]  C. Beausang,et al.  Estimation of ( n, f ) Cross Sections by Measuring Reaction Probability Ratios , 2005 .

[23]  S. Cristallo,et al.  s process in low-mass asymptotic giant branch stars , 2005, astro-ph/0501405.

[24]  C. Grosjean,et al.  Determination of the 233Pa(n, f) reaction cross section from 0.5 to 10 MeV neutron energy using the transfer reaction 232Th(3He, p)234Pa , 2004 .

[25]  W. Younes,et al.  Simulated neutron-induced fission cross sections for various Pu, U, and Th isotopes , 2003 .

[26]  W. Younes,et al.  Neutron-induced fission cross sections simulated from (t,pf) results , 2003 .

[27]  Jingshang Zhang,et al.  UNF Code for Fast Neutron Reaction Data Calculations , 2002 .

[28]  Jingshang Zhang,et al.  A Unified Hauser-Feshbach and Exciton Model for Calculating Double-Differential Cross Sections of Neutron-Induced Reactions Below 20 MeV , 1993 .

[29]  F. Käppeler,et al.  s-process nucleosynthesis-nuclear physics and the classical model , 1989 .

[30]  R. Macklin Neutron capture measurements on radioactive93Zr , 1985 .

[31]  B. Allen,et al.  High Resolution Neutron Transmission and Capture for 91Zr , 1977 .

[32]  J. D. Cramer,et al.  Neutron Fission Cross Sections for 231Th, 233Th, 235U, 237U, 239U, 241Pu, and 243Pu from 0.5 to 2.25 MeV Using (t, pf) Reactions , 1970 .

[33]  Victor F. Weisskopf,et al.  On the Yield of Nuclear Reactions with Heavy Elements , 1940 .

[34]  N. Takaki,et al.  Fission Study of Actinide Nuclei Using Multi-nucleon Transfer Reactions , 2015 .

[35]  S. R. Lesher,et al.  Indirect determination of neutron capture cross sections on spherical and near-spherical nuclei using the surrogate method , 2012 .

[36]  M. Cromaz,et al.  Deducing theU237(n,f) cross section using the surrogate ratio method , 2006 .