Pseudomonas aeruginosa MifS-Mif R Two-Component System Is Specific for alpha-Ketoglutarate Utilization

Pseudomonas aeruginosa is a Gram-negative, metabolically versatile opportunistic pathogen that elaborates a multitude of virulence factors, and is extraordinarily resistant to a gamut of clinically significant antibiotics. This ability, in part, is mediated by two-component regulatory systems (TCS) that play a crucial role in modulating virulence mechanisms and metabolism. MifS (PA5512) and MifR (PA5511) form one such TCS implicated in biofilm formation. MifS is a sensor kinase whereas MifR belongs to the NtrC superfamily of transcriptional regulators that interact with RpoN (σ). In this study we demonstrate that themifS andmifR genes form a two-gene operon. The close proximity ofmifSR operon to poxB (PA5514) encoding a ß-lactamase hinted at the role of MifSR TCS in regulating antibiotic resistance. To better understand this TCS, clean in-frame deletions were made in P. aeruginosa PAO1 creating PAOΔmifS, PAOΔmifR and PAOΔmifSR. The loss ofmifSR had no effect on the antibiotic resistance profile. Phenotypic microarray (BioLOG) analyses of PAOΔmifS and PAOΔmifR revealed that these mutants were unable to utilize C5-dicarboxylate α-ketoglutarate (α-KG), a key tricarboxylic acid cycle intermediate. This finding was confirmed using growth analyses, and the defect can be rescued bymifR ormifSR expressed in trans. ThesemifSRmutants were able to utilize all the other TCA cycle intermediates (citrate, succinate, fumarate, oxaloacetate or malate) and sugars (glucose or sucrose) except α-KG as the sole carbon source. We confirmed that themifSRmutants have functional dehydrogenase complex suggesting a possible defect in α-KG transport. The inability of the mutants to utilize α-KG was rescued by expressing PA5530, encoding C5-dicarboxylate transporter, under a regulatable promoter. In addition, we demonstrate that besides MifSR and PA5530, α-KG utilization requires functional RpoN. These data clearly suggests thatP. aeruginosaMifSR TCS is involved in sensing α-KG and regulating its transport and subsequent metabolism. PLOS ONE | DOI:10.1371/journal.pone.0129629 June 26, 2015 1 / 31 OPEN ACCESS Citation: Tatke G, Kumari H, Silva-Herzog E, Ramirez L, Mathee K (2015) Pseudomonas aeruginosa MifS-MifR Two-Component System Is Specific for α-Ketoglutarate Utilization. PLoS ONE 10 (6): e0129629. doi:10.1371/journal.pone.0129629 Academic Editor: Min Wu, University of North Dakota, UNITED STATES Received: February 24, 2015 Accepted: May 10, 2015 Published: June 26, 2015 Copyright: © 2015 Tatke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All relevant data are within the paper. Funding: This study was supported in part by the National Institutes of Health – Minority Biomedical Research Support SCORE (SC1AI081376; to KM), National Science Foundation IIP-1237818 [PFI-AIR: CREST-I/UCRC-Industry Ecosystem to Pipeline Research] (to KM), Biomedical Research Initiative (BRI) student research award (NIH/NIGMS R25 GM061347; to GT), Florida International University (FIU) teaching assistantship (Biological Sciences; to GT), FIU research assistantship (Herbert Wertheim College of Medicine; to GT), MBRS-RISE fellowship

[1]  Narmada Thanki,et al.  CDD: NCBI's conserved domain database , 2014, Nucleic Acids Res..

[2]  K. Rumbaugh,et al.  Requirements for Pseudomonas aeruginosa Acute Burn and Chronic Surgical Wound Infection , 2014, PLoS genetics.

[3]  D. Dunn,et al.  Genetic Analysis of the Assimilation of C5-Dicarboxylic Acids in Pseudomonas aeruginosa PAO1 , 2014, Journal of bacteriology.

[4]  K. Mathee,et al.  Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics. , 2014, Journal of medical microbiology.

[5]  H. Fraimow,et al.  Resistant gram-negative infections. , 2013, Critical care clinics.

[6]  E. Kerem,et al.  Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications , 2013, Thorax.

[7]  K. Mathee,et al.  A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence , 2012, Nucleic acids research.

[8]  Manuel Liebeke,et al.  Metabolite profiling to characterize disease-related bacteria: gluconate excretion by Pseudomonas aeruginosa mutants and clinical isolates from cystic fibrosis patients , 2013 .

[9]  T. Murray,et al.  The Ability of Virulence Factor Expression by Pseudomonas aeruginosa to Predict Clinical Disease in Hospitalized Patients , 2012, PloS one.

[10]  M. Schurr,et al.  Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation , 2012, Molecular microbiology.

[11]  Stephen Lory,et al.  The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature , 2012, PLoS pathogens.

[12]  S. Lory,et al.  The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes , 2012, PloS one.

[13]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[14]  N. Wingreen,et al.  α-ketoglutarate coordinates carbon and nitrogen utilization via Enzyme I inhibition , 2011, Nature chemical biology.

[15]  Martina Valentini,et al.  Identification of C4-Dicarboxylate Transport Systems in Pseudomonas aeruginosaPAO1 , 2011, Journal of bacteriology.

[16]  B. Halliwell,et al.  Artefacts in cell culture: α-Ketoglutarate can scavenge hydrogen peroxide generated by ascorbate and epigallocatechin gallate in cell culture media. , 2011, Biochemical and biophysical research communications.

[17]  Robert E. W. Hancock,et al.  The Sensor Kinase CbrA Is a Global Regulator That Modulates Metabolism, Virulence, and Antibiotic Resistance in Pseudomonas aeruginosa , 2010, Journal of bacteriology.

[18]  Raymond Lo,et al.  Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes , 2010, Nucleic Acids Res..

[19]  F. O'Gara,et al.  Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria , 2010, BMC Microbiology.

[20]  E. Pearlman,et al.  TLR4 and TLR5 on Corneal Macrophages Regulate Pseudomonas aeruginosa Keratitis by Signaling through MyD88-Dependent and -Independent Pathways , 2010, The Journal of Immunology.

[21]  M. J. Pozuelo,et al.  Chronic colonization by Pseudomonas aeruginosa of patients with obstructive lung diseases: cystic fibrosis, bronchiectasis, and chronic obstructive pulmonary disease. , 2010, Diagnostic microbiology and infectious disease.

[22]  R. Bourret,et al.  Two-component signal transduction. , 2010, Current opinion in microbiology.

[23]  A. Rietsch,et al.  Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV , 2010, Molecular microbiology.

[24]  B. Valot,et al.  Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate–regulated by interaction of PII with the biotin carboxyl carrier subunit , 2009, Proceedings of the National Academy of Sciences.

[25]  E. Sonnleitner,et al.  Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa , 2009, Proceedings of the National Academy of Sciences.

[26]  K. Sauer,et al.  A Novel Signaling Network Essential for Regulating Pseudomonas aeruginosa Biofilm Development , 2009, PLoS pathogens.

[27]  G. O’Toole,et al.  New yeast recombineering tools for bacteria. , 2009, Plasmid.

[28]  S. Lory,et al.  The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs , 2009, Molecular microbiology.

[29]  P. Ortet,et al.  P2CS: a two-component system resource for prokaryotic signal transduction research , 2009, BMC Genomics.

[30]  V. Wendisch,et al.  Characterization of the Dicarboxylate Transporter DctA in Corynebacterium glutamicum , 2009, Journal of bacteriology.

[31]  M. Bott,et al.  Citrate Utilization by Corynebacterium glutamicum Is Controlled by the CitAB Two-Component System through Positive Regulation of the Citrate Transport Genes citH and tctCBA , 2009, Journal of bacteriology.

[32]  R. Hancock,et al.  Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. , 2009, FEMS microbiology reviews.

[33]  Martin C. Frith,et al.  Discovering Sequence Motifs with Arbitrary Insertions and Deletions , 2008, PLoS Comput. Biol..

[34]  P. Rainey,et al.  Dual Involvement of CbrAB and NtrBC in the Regulation of Histidine Utilization in Pseudomonas fluorescens SBW25 , 2008, Genetics.

[35]  É. Potvin,et al.  Sigma factors in Pseudomonas aeruginosa. , 2008, FEMS microbiology reviews.

[36]  Robert H. Gross,et al.  A novel ensemble learning method for de novo computational identification of DNA binding sites , 2007, BMC Bioinformatics.

[37]  Chung-Dar Lu,et al.  Regulation of Carbon and Nitrogen Utilization by CbrAB and NtrBC Two-Component Systems in Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[38]  F. Rojo,et al.  The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator , 2007, Molecular microbiology.

[39]  D. Park,et al.  Bacteriology of chronic suppurative otitis media – a multicenter study , 2007, Acta oto-laryngologica.

[40]  A. Paccanaro,et al.  Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles , 2006, BMC Genomics.

[41]  H. Schweizer,et al.  A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. , 2006, Journal of microbiological methods.

[42]  G. O’Toole,et al.  Keeping Their Options Open: Acute versus Persistent Infections , 2006, Journal of bacteriology.

[43]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[44]  K. Mathee,et al.  Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. , 2005, Gene.

[45]  J. Mekalanos,et al.  ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. Ninfa,et al.  PII signal transduction proteins: sensors of alpha-ketoglutarate that regulate nitrogen metabolism. , 2005, Current opinion in microbiology.

[47]  Hwei-Ling Peng,et al.  Evolutionary Analysis of the Two-Component Systems in Pseudomonas aeruginosa PAO1 , 2004, Journal of Molecular Evolution.

[48]  P. Antonelli,et al.  Hearing Loss with Semicircular Canal Transection and Pseudomonas Aeruginosa Otitis Media , 2004, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[49]  Jinhai Gao,et al.  Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors , 2004, Nature.

[50]  S. Hebert Physiology: Orphan detectors of metabolism , 2004, Nature.

[51]  R. Manfredi,et al.  Pseudomonas spp. complications in patients with HIV disease: An eight-year clinical and microbiological survey , 2000, European Journal of Epidemiology.

[52]  K. Timmis,et al.  A general system to integratelacZ fusions into the chromosomes of gram-negative eubacteria: regulation of thePm promoter of theTOL plasmid studied with all controlling elements in monocopy , 1992, Molecular and General Genetics MGG.

[53]  Milton H. Saier,et al.  The IUBMB-endorsed transporter classification system , 2004, Methods in molecular biology.

[54]  Víctor de Lorenzo,et al.  The sigma54 regulon (sigmulon) of Pseudomonas putida. , 2003, Environmental microbiology.

[55]  G. Pessi,et al.  Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. , 2003, Journal of bacteriology.

[56]  S. Kalhan,et al.  The Key Role of Anaplerosis and Cataplerosis for Citric Acid Cycle Function* , 2002, Journal of Biological Chemistry.

[57]  J. Emerson,et al.  Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis , 2002, Pediatric pulmonology.

[58]  K. Poole,et al.  FpvA Receptor Involvement in Pyoverdine Biosynthesis in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[59]  S. Suh,et al.  Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. , 2002, Microbiology.

[60]  K. Varughese,et al.  Molecular recognition of bacterial phosphorelay proteins. , 2002, Current opinion in microbiology.

[61]  Gerald B. Pier,et al.  Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.

[62]  G. Unden,et al.  C4-dicarboxylate carriers and sensors in bacteria. , 2002, Biochimica et biophysica acta.

[63]  M. Saier,et al.  The Transporter Classification (TC) System, 2002 , 2002, Critical reviews in biochemistry and molecular biology.

[64]  D. Haas,et al.  The CbrA–CbrB two‐component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa , 2001, Molecular microbiology.

[65]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[66]  J. Sekiguchi,et al.  The CitST two‐component system regulates the expression of the Mg‐citrate transporter in Bacillus subtilis , 2000, Molecular microbiology.

[67]  J. Lyczak,et al.  Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. , 2000, Microbes and infection.

[68]  K. Asai,et al.  Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. , 2000, Microbiology.

[69]  W. Hillen,et al.  Regulation of carbon catabolism in Bacillus species. , 2000, Annual review of microbiology.

[70]  J. Guest,et al.  Inactivation and Regulation of the Aerobic C4-Dicarboxylate Transport (dctA) Gene ofEscherichia coli , 1999, Journal of bacteriology.

[71]  R. Overbeek,et al.  The use of gene clusters to infer functional coupling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Guest,et al.  Identification and Characterization of a Two-Component Sensor-Kinase and Response-Regulator System (DcuS-DcuR) Controlling Gene Expression in Response to C4-Dicarboxylates in Escherichia coli , 1999, Journal of bacteriology.

[73]  E. Morett,et al.  Compilation and analysis of sigma(54)-dependent promoter sequences. , 1999, Nucleic acids research.

[74]  B. Snel,et al.  Conservation of gene order: a fingerprint of proteins that physically interact. , 1998, Trends in biochemical sciences.

[75]  C. Bascom-Slack,et al.  A physical assay for detection of early meiotic recombination intermediates in Saccharomyces cerevisiae , 1998, Molecular and General Genetics MGG.

[76]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[77]  P. Poole,et al.  Roles of DctA and DctB in Signal Detection by the Dicarboxylic Acid Transport System of Rhizobium leguminosarum , 1998, Journal of bacteriology.

[78]  E. Morett,et al.  A proposed architecture for the central domain of the bacterial enhancer‐binding proteins based on secondary structure prediction and fold recognition , 1997, Protein science : a publication of the Protein Society.

[79]  P. Phibbs,et al.  Catabolite repression control in the Pseudomonads. , 1996, Research in microbiology.

[80]  M. Bott,et al.  Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae , 1995, Molecular microbiology.

[81]  H. Schweizer,et al.  An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. , 1995, Gene.

[82]  L. Segovia,et al.  The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains , 1993, Journal of bacteriology.

[83]  M. Merrick In a class of its own--the RNA polymerase sigma factor sigma 54 (sigma N). , 1993, Molecular microbiology.

[84]  J. Leveau,et al.  In vitro phosphorylation of AlgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho‐donor molecules , 1992, Molecular microbiology.

[85]  B. Wanner,et al.  Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli , 1992, Journal of bacteriology.

[86]  J. Stock,et al.  Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Phibbs,et al.  Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO , 1991, Journal of bacteriology.

[88]  A. Shatkin,et al.  Escherichia coli kgtP encodes an alpha-ketoglutarate transporter. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[89]  S. Ho,et al.  Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. , 2013, BioTechniques.

[90]  R. Watson Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucleotide sequence and deduced products of dctA, dctB, and dctD. , 1990, Molecular plant-microbe interactions : MPMI.

[91]  I. Crawford,et al.  Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications , 1990, Journal of bacteriology.

[92]  A. Ninfa,et al.  Protein phosphorylation and regulation of adaptive responses in bacteria. , 1989, Microbiological reviews.

[93]  L. M. Albright,et al.  Conservation between coding and regulatory elements of Rhizobium meliloti and Rhizobium leguminosarum dct genes , 1989, Journal of bacteriology.

[94]  Trevor C. Charles,et al.  Analysis of C4‐dicarboxylate transport genes in Rhizobium meliloti , 1989, Molecular microbiology.

[95]  S. Harayama,et al.  Nucleotide and deduced amino acid sequence of the RpoN sigma-factor of Pseudomonas putida. , 1989, Nucleic acids research.

[96]  D. Seal,et al.  Pathogenesis and therapy of pseudomonas aeruginosa keratitis , 1988, Eye.

[97]  F. Ausubel,et al.  Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products. , 1987, Nucleic acids research.

[98]  L. M. Albright,et al.  Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions , 1987, Journal of bacteriology.

[99]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[100]  J. M. Wood,et al.  Succinate transport in Rhizobium leguminosarum , 1981, Journal of bacteriology.

[101]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[102]  W F Loomis,et al.  Glucose-Lactose Diauxie in Escherichia coli , 1967, Journal of bacteriology.

[103]  E. King,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954, The Journal of laboratory and clinical medicine.

[104]  R. A. Smith,et al.  A deviation from the conventional tricarboxylic acid cycle in Pseudomonas aeruginosa. , 1953, Biochimica et biophysica acta.

[105]  P. Liu UTILIZATION OF CARBOHYDRATES BY PSEUDOMONAS AERUGINOSA , 1952, Journal of bacteriology.

[106]  A. H. Smith,et al.  Chromatographic determination of the acids of the citric acid cycle in tissues. , 1951, The Journal of biological chemistry.

[107]  H. Krebs The citric acid cycle and the Szent-Györgyi cycle in pigeon breast muscle. , 1940, The Biochemical journal.