Multimodal optimization of thermal histories

Practical optimization problems often require the location of multiple solutions. In this context, we present a model, based on a genetic algorithm (GA) for the optimization of thermal histories. Since in classical GA, the population of individuals converges over time to a single optimum, even within a multimodal domain, the proposed approach uses a niching method, such as the sharing heuristic, that enables a GA to locate multiple optima of this multimodal problem. Some empirical results are then presented and compared with another model.

[1]  R. Donelick Crystallographic orientation dependence of mean etchable fission track length in apatite; an empirical model and experimental observations , 1991 .

[2]  N. Sabil La datation par traces de fission : aspects méthodologiques et applications thermochronologiques en contexte alpin et de marge continentale. , 1995 .

[3]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[4]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[5]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[6]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[7]  W. Carlson Mechanisms and kinetics of apatite fission-track annealing , 1990 .

[8]  Peter Van den haute,et al.  Fission track dating , 1992 .

[9]  Yee Leung,et al.  Degree of population diversity - a perspective on premature convergence in genetic algorithms and its Markov chain analysis , 1997, IEEE Trans. Neural Networks.

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[11]  Timothy M. Lutz,et al.  An inverse method of modeling thermal histories from apatite fission-track data , 1991 .

[12]  Paul F. Green,et al.  Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales , 1989 .

[13]  Guy Drijkoningen,et al.  Genetic algorithms : an evolution from Monte Carlo methods for strongly non-linear geophysical optimization problems , 1991 .

[14]  Paul F. Green,et al.  Thermal annealing of fission tracks in apatite 2. A quantitative analysis , 1987 .

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  J. Corrigan,et al.  Inversion of apatite fission track data for thermal history information , 1991 .

[17]  G. Laslett,et al.  Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour , 1988 .

[18]  Kevin D. Crowley,et al.  LENMODEL: a forward model for calculating length distributions and fission-track ages in apatite , 1993 .