Convergence of a low order non-local Navier-Stokes-Korteweg system: The order-parameter model

In the present article we consider a capillary compressible system introduced by C. Rohde after works of Bandon, Lin and Rogers, called the order-parameter model, and whose aim is to reduce the numerical difficulties that one encounters in the case of the classical local Korteweg system (involving derivatives of order three) or the non-local system (also introduced by Rohde after works of Van der Waals, and which involves a convolution operator). We prove that this system has a unique global solution for initial data close to an equilibrium and we precisely study the convergence of this solution towards the local Korteweg model.

[1]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[2]  D. Reudink On the signs of the v-derivatives of the modified Bessel functions Iv(x) and Kv(x) , 1968 .

[3]  B. Haspot,et al.  Convergence of capillary fluid models: from the non-local to the local Korteweg model , 2011, 1101.2398.

[4]  Tao Lin,et al.  Phase transitions and hysteresis in nonlocal and order-parameter models , 1995 .

[5]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[6]  Christian Rohde,et al.  On local and non‐local Navier‐Stokes‐Korteweg systems for liquid‐vapour phase transitions , 2005 .

[7]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[8]  M. Vishik,et al.  Hydrodynamics in Besov Spaces , 1998 .

[9]  R. Danchin UNIFORM ESTIMATES FOR TRANSPORT-DIFFUSION EQUATIONS , 2007 .

[10]  J. D. van der Waals,et al.  Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung , 1894 .

[11]  R. Danchin Zero Mach number limit in critical spaces for compressible Navier–Stokes equations , 2002 .

[12]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[13]  Raphaël Danchin,et al.  A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework , 2010 .

[14]  Taoufik Hmidi,et al.  On the global well-posedness of the Euler-Boussinesq system with fractional dissipation , 2009, 0903.3747.

[15]  T. Hmidi Régularité höldérienne des poches de tourbillon visqueuses , 2004 .

[16]  Taoufik Hmidi,et al.  On the Global Well-Posedness of the Critical Quasi-Geostrophic Equation , 2008, SIAM J. Math. Anal..

[17]  Frédéric Charve,et al.  Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system , 2011, 1110.5154.

[18]  N. Lerner,et al.  Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .

[19]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[20]  Taoufik Hmidi,et al.  Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces , 2006, math/0611494.

[21]  H. Holden,et al.  Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena , 2010 .

[22]  J. E. Dunn,et al.  On the Thermomechanics of Interstitial Working , 1985 .

[23]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[24]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .

[25]  Raphaël Danchin,et al.  Existence of solutions for compressible fluid models of Korteweg type , 2001 .

[26]  A. Gray Bessel Functions , 1899, Nature.

[27]  Boris Haspot,et al.  Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids , 2010, 1005.0706.

[28]  Boris Haspot Existence of strong solutions for nonisothermal Korteweg system@@@Existence de solutions fortes pour le système de Korteweg , 2009 .

[29]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[30]  Boris Haspot,et al.  On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model , 2013, 1302.2585.

[31]  Elias M. Stein,et al.  Fourier Analysis: An Introduction , 2003 .

[32]  Giuseppe Dattoli,et al.  Integrals of Bessel functions , 2011, Appl. Math. Lett..

[33]  B. Haspot Cauchy problem for viscous shallow water equations with a term of capillarity , 2008, 0803.1939.

[34]  Eitan Tadmor,et al.  Hyperbolic Problems: Theory, Numerics and Applications , 2009 .

[35]  Raphaël Danchin,et al.  Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .

[36]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[37]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[38]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[39]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[40]  Frédéric Coquel,et al.  Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows , 2005 .