Convergence of a low order non-local Navier-Stokes-Korteweg system: The order-parameter model
暂无分享,去创建一个
[1] D. Lieberman,et al. Fourier analysis , 2004, Journal of cataract and refractive surgery.
[2] D. Reudink. On the signs of the v-derivatives of the modified Bessel functions Iv(x) and Kv(x) , 1968 .
[3] B. Haspot,et al. Convergence of capillary fluid models: from the non-local to the local Korteweg model , 2011, 1101.2398.
[4] Tao Lin,et al. Phase transitions and hysteresis in nonlocal and order-parameter models , 1995 .
[5] G. A. Watson. A treatise on the theory of Bessel functions , 1944 .
[6] Christian Rohde,et al. On local and non‐local Navier‐Stokes‐Korteweg systems for liquid‐vapour phase transitions , 2005 .
[7] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[8] M. Vishik,et al. Hydrodynamics in Besov Spaces , 1998 .
[9] R. Danchin. UNIFORM ESTIMATES FOR TRANSPORT-DIFFUSION EQUATIONS , 2007 .
[10] J. D. van der Waals,et al. Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung , 1894 .
[11] R. Danchin. Zero Mach number limit in critical spaces for compressible Navier–Stokes equations , 2002 .
[12] David M. Miller,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[13] Raphaël Danchin,et al. A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework , 2010 .
[14] Taoufik Hmidi,et al. On the global well-posedness of the Euler-Boussinesq system with fractional dissipation , 2009, 0903.3747.
[15] T. Hmidi. Régularité höldérienne des poches de tourbillon visqueuses , 2004 .
[16] Taoufik Hmidi,et al. On the Global Well-Posedness of the Critical Quasi-Geostrophic Equation , 2008, SIAM J. Math. Anal..
[17] Frédéric Charve,et al. Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system , 2011, 1110.5154.
[18] N. Lerner,et al. Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .
[19] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[20] Taoufik Hmidi,et al. Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces , 2006, math/0611494.
[21] H. Holden,et al. Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena , 2010 .
[22] J. E. Dunn,et al. On the Thermomechanics of Interstitial Working , 1985 .
[23] J. S. Rowlinson,et al. Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .
[24] G. Watson. Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .
[25] Raphaël Danchin,et al. Existence of solutions for compressible fluid models of Korteweg type , 2001 .
[26] A. Gray. Bessel Functions , 1899, Nature.
[27] Boris Haspot,et al. Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids , 2010, 1005.0706.
[28] Boris Haspot. Existence of strong solutions for nonisothermal Korteweg system@@@Existence de solutions fortes pour le système de Korteweg , 2009 .
[29] J. Waals. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .
[30] Boris Haspot,et al. On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model , 2013, 1302.2585.
[31] Elias M. Stein,et al. Fourier Analysis: An Introduction , 2003 .
[32] Giuseppe Dattoli,et al. Integrals of Bessel functions , 2011, Appl. Math. Lett..
[33] B. Haspot. Cauchy problem for viscous shallow water equations with a term of capillarity , 2008, 0803.1939.
[34] Eitan Tadmor,et al. Hyperbolic Problems: Theory, Numerics and Applications , 2009 .
[35] Raphaël Danchin,et al. Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .
[36] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[37] J. Gibbs. On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.
[38] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[39] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[40] Frédéric Coquel,et al. Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows , 2005 .