In vivo blood flow imaging of inflammatory human skin induced by tape stripping using optical microangiography

Vasculature response is a hallmark for most inflammatory skin disorders. Tape stripping on human skin causes a minor inflammation which leads to changes in microvasculature. In this study, optical microangiography (OMAG), noninvasive volumetric microvasculature in vivo imaging method, has been used to track the vascular responses after tape stripping. Vessel density has been quantified and used to correlate with the degree of skin irritation. The proved capability of OMAG technique in visualizing the microvasculature network under inflamed skin condition can play an important role in clinical trials of treatment and diagnosis of inflammatory skin disorders.

[1]  K. Messmer,et al.  Orthogonal polarization spectral imaging: A new method for study of the microcirculation , 1999, Nature Medicine.

[2]  A. Antonelli,et al.  Systemic sclerosis and cryoglobulinemia: our experience with overlapping syndrome of scleroderma and severe cryoglobulinemic vasculitis and review of the literature. , 2013, Autoimmunity reviews.

[3]  Philippe Bonnin,et al.  Noninvasive assessment of endothelial function in the skin microcirculation. , 2010, American journal of hypertension.

[4]  G. Clough Role of nitric oxide in the regulation of microvascular perfusion in human skin in vivo , 1999, The Journal of physiology.

[5]  Jag Bhawan,et al.  Lymphangiogenesis and angiogenesis in non‐phymatous rosacea , 2007, Journal of cutaneous pathology.

[6]  R O Potts,et al.  Examination of stratum corneum barrier function in vivo by infrared spectroscopy. , 1990, The Journal of investigative dermatology.

[7]  M. Schmuth,et al.  A model system using tape stripping for characterization of Langerhans cell-precursors in vivo. , 2004, The Journal of investigative dermatology.

[8]  K. Tojo,et al.  A method for predicting steady-state rate of skin penetration in vivo. , 1989, The Journal of investigative dermatology.

[9]  Thilo Gambichler,et al.  In vivo optical coherence tomography of basal cell carcinoma. , 2007, Journal of dermatological science.

[10]  G. Jemec,et al.  In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20‐MHz ultrasound , 2009, The British journal of dermatology.

[11]  R. P. Becker,et al.  Angiogenesis: The Major Abnormality of the Keratin‐14 IL‐4 Transgenic Mouse Model of Atopic Dermatitis , 2005, Microcirculation.

[12]  M. Grisham,et al.  Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues. , 2007, American journal of physiology. Gastrointestinal and liver physiology.

[13]  H. Svensson,et al.  Wound healing after total elbow replacement in rheumatoid arthritis. Wound complications in 50 cases and laser-Doppler imaging of skin microcirculation. , 1995, Acta orthopaedica Scandinavica.

[14]  L. Frank,et al.  CAPILLARY MICROSCOPY IN INDUCED SKIN INFLAMMATION. , 1963, Archives of dermatology.

[15]  Ruikang K. Wang,et al.  Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. , 2011, Journal of biomedical optics.

[16]  José Juan Escobar-Chávez,et al.  The tape-stripping technique as a method for drug quantification in skin. , 2008, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[17]  T. King,et al.  Laser doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud's phenomenon and systemic sclerosis. , 1999, Microvascular research.

[18]  P. Carmeliet Angiogenesis in health and disease , 2003, Nature Medicine.

[19]  Ruikang K. Wang,et al.  Capillary blood flow imaging within human finger cuticle using optical microangiography , 2015, Journal of biophotonics.

[20]  E. Paleolog Angiogenesis in rheumatoid arthritis , 2002, Arthritis research.

[21]  Ruikang K. Wang,et al.  Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography. , 2006, Optics letters.

[22]  Till Acker,et al.  Uncontrolled Expression of Vascular Endothelial Growth Factor and Its Receptors Leads to Insufficient Skin Angiogenesis in Patients With Systemic Sclerosis , 2004, Circulation research.

[23]  David A. Boas,et al.  Quantitative cerebral blood flow with Optical Coherence Tomography , 2010, Optics express.

[24]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[25]  Michael Detmar,et al.  The cutaneous vascular system in chronic skin inflammation , 2011, The journal of investigative dermatology. Symposium proceedings.

[26]  Ruikang K. Wang,et al.  Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography , 2011, IEEE Transactions on Biomedical Engineering.

[27]  Thilo Gambichler,et al.  Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology , 2005, Archives of Dermatological Research.

[28]  R. F. Shaw,et al.  Control of Coronary Blood Flow by an Autoregulatory Mechanism , 1964, Circulation research.

[29]  E. Crivellato,et al.  Angiogenesis in asthma , 2009, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[30]  H. Pinkus,et al.  Examination of the epidermis by the strip method of removing horny layers. I. Observations on thickness of the horny layer, and on mitotic activity after stripping. , 1951, Journal of Investigative Dermatology.

[31]  A. Naik,et al.  Validation of Reflectance Infrared Spectroscopy as a Quantitative Method to Measure Percutaneous Absorption In Vivo , 1993, Pharmaceutical Research.

[32]  José Juan Escobar-Chávez,et al.  In Vivo Skin Permeation of Sodium Naproxen Formulated in Pluronic F-127 Gels: Effect of Azone® and Transcutol® , 2005, Drug development and industrial pharmacy.

[33]  I M Braverman,et al.  Electron microscopic studies of the microcirculation in psoriasis. , 1972, The Journal of investigative dermatology.

[34]  A C Shore,et al.  Capillaroscopy and the measurement of capillary pressure. , 2000, British journal of clinical pharmacology.

[35]  Ruikang K. Wang,et al.  Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice , 2010, Journal of Neuroscience Methods.

[36]  H. Dvorak,et al.  Increased expression of vascular permeability factor (vascular endothelial growth factor) in bullous pemphigoid, dermatitis herpetiformis, and erythema multiforme. , 1995, The Journal of investigative dermatology.

[37]  J. Vincent,et al.  Microcirculatory Alterations in Patients With Severe Sepsis: Impact of Time of Assessment and Relationship With Outcome* , 2013, Critical care medicine.

[38]  Helmut H. Wolff,et al.  Optical coherence tomography in contact dermatitis and psoriasis , 2003, Archives of Dermatological Research.

[39]  Ruikang K. Wang,et al.  Wide velocity range Doppler optical microangiography using optimized step-scanning protocol with phase variance mask , 2013, Journal of biomedical optics.

[40]  Ruikang K. Wang,et al.  Tracking Dynamic Microvascular Changes during Healing after Complete Biopsy Punch on the Mouse Pinna Using Optical Microangiography , 2013, PloS one.

[41]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[42]  Tokichi Miyakawa,et al.  Ultraviolet B-induced skin angiogenesis is associated with a switch in the balance of vascular endothelial growth factor and thrombospondin-1 expression. , 2004, The Journal of investigative dermatology.

[43]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[44]  Joseph M. Schmitt,et al.  Optical coherence tomography (OCT): a review , 1999 .

[45]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[46]  Ruikang K. Wang,et al.  In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography , 2011, Lasers in surgery and medicine.

[47]  A. Carpi,et al.  Skin microcirculation in peripheral arterial obliterative disease. , 2004, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[48]  J. Guy,et al.  Noncontact laser Doppler imaging in burn depth analysis of the extremities. , 2003, The Journal of burn care & rehabilitation.

[49]  Ruikang K. Wang,et al.  Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice. , 2011, Journal of biomedical optics.

[50]  G. Hansson Inflammation, atherosclerosis, and coronary artery disease. , 2005, The New England journal of medicine.

[51]  G. Leese,et al.  Blood flow changes in diabetic foot ulcers treated with dermal replacement therapy. , 2002, The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons.

[52]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[53]  Ruikang K. Wang,et al.  Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. , 2009, Optics express.

[54]  G. Cevc Drug delivery across the skin. , 1997, Expert opinion on investigational drugs.