On the Analysis of Multidimensional Contingency Tables

Abstract The principle of minimum discrimination information estimation is described and used to generate estimates for tests of hypotheses concerning various interactions and effects in the analysis of multidimensional contingency tables. All classical hypotheses for contingency tables can be generated by the use of this principle when certain marginals are considered as fixed. Analysis of information tables are given for a four-way contingency table.

[1]  M. Bartlett Contingency Table Interactions , 1935 .

[2]  S. Kullback,et al.  Symmetry and Marginal Homogeneity of an r×r Contingency Table , 1969 .

[3]  L. A. Goodman Interactions in Multidimensional Contingency Tables , 1964 .

[4]  H. O. Lancaster The chi-squared distribution , 1971 .

[5]  Y. Bishop,et al.  Full Contingency Tables, Logits, and Split Contingency Tables , 1969 .

[6]  S. Kullback,et al.  Contingency tables with given marginals. , 1968, Biometrika.

[7]  Lucien M. LeCam,et al.  Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability (6th) Held at the Statistical Laboratory, University of California, June 21-July 18, 1970. Volume III. Probability Theory, , 1972 .

[8]  S. Fienberg An Iterative Procedure for Estimation in Contingency Tables , 1970 .

[9]  E. H. Simpson,et al.  The Interpretation of Interaction in Contingency Tables , 1951 .

[10]  S Kullback,et al.  An application of information theory to the analysis of contingency tables, with a table of 2n ln, n=1(1)10,000 , 1962 .

[11]  R. Plackett A Note on Interactions in Contingency Tables , 1962 .

[12]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[13]  L. Campbell Equivalence of Gauss's Principle and Minimum Discrimination Information Estimation of Probabilities , 1970 .

[14]  Stephen E. Fienberg,et al.  The Analysis of Multidimensional Contingency Tables , 1970 .

[15]  B. N. Lewis On the Analysis of Interaction in Multi‐Dimensional Contingency Tables , 1962 .

[16]  Marvin A. Kastenbaum,et al.  On the Hypothesis of No "Interaction" In a Multi-way Contingency Table , 1956 .

[17]  N Mantel,et al.  Models for complex contingency tables and polychotomous dosage response curves. , 1966, Biometrics.

[18]  H. H. Ku Interaction in multidimensional contingency tables: an information theoretic approach , 1968 .

[19]  Frederick Mosteller,et al.  Association and Estimation in Contingency Tables , 1968 .

[20]  William F. Taylor,et al.  Distance Functions and Regular Best Asymptotically Normal Estimates , 1953 .

[21]  S. Kullback,et al.  Tests for Contingency Tables and Marltov Chains , 1962 .

[22]  J. Darroch Interactions in Multi‐Factor Contingency Tables , 1962 .

[23]  Maurice G. Kendall On the Future of Statistics-a Second Look , 1968 .

[24]  J. Berkson,et al.  Application of minimum logit chi square estimate to a problem of Grizzle with a notation on the problem of 'no interaction'. , 1968, Biometrics.

[25]  Solomon Kullback,et al.  Approximating discrete probability distributions , 1969, IEEE Trans. Inf. Theory.

[26]  L. A. Goodman The Multivariate Analysis of Qualitative Data: Interactions among Multiple Classifications , 1970 .

[27]  I. Good Maximum Entropy for Hypothesis Formulation, Especially for Multidimensional Contingency Tables , 1963 .

[28]  K. Pearson On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling , 1900 .

[29]  S. Kullback,et al.  250. Note: Minimum Discrimination Information Estimation , 1968 .

[30]  S. Kullback,et al.  Minimum discrimination information estimation. , 2006, Biometrics.