Ca2+-Activated K+ Channels Reduce Network Excitability, Improving Adaptability and Energetics for Transmitting and Perceiving Sensory Information

Ca2+-activated K+ channels (BK and SK) are ubiquitous in synaptic circuits, but their role in network adaptation and sensory perception remains largely unknown. Using electrophysiological and behavioral assays and biophysical modeling, we discover how visual information transfer in mutants lacking the BK channel (dSlo−), SK channel (dSK−), or both (dSK−;; dSlo−) is shaped in the female fruit fly (Drosophila melanogaster) R1–R6 photoreceptor-LMC circuits (R-LMC-R system) through synaptic feedforward-feedback interactions and reduced R1–R6 Shaker and Shab K+ conductances. This homeostatic compensation is specific for each mutant, leading to distinctive adaptive dynamics. We show how these dynamics inescapably increase the energy cost of information and promote the mutants' distorted motion perception, determining the true price and limits of chronic homeostatic compensation in an in vivo genetic animal model. These results reveal why Ca2+-activated K+ channels reduce network excitability (energetics), improving neural adaptability for transmitting and perceiving sensory information. SIGNIFICANCE STATEMENT In this study, we directly link in vivo and ex vivo experiments with detailed stochastically operating biophysical models to extract new mechanistic knowledge of how Drosophila photoreceptor-interneuron-photoreceptor (R-LMC-R) circuitry homeostatically retains its information sampling and transmission capacity against chronic perturbations in its ion-channel composition, and what is the cost of this compensation and its impact on optomotor behavior. We anticipate that this novel approach will provide a useful template to other model organisms and computational neuroscience, in general, in dissecting fundamental mechanisms of homeostatic compensation and deepening our understanding of how biological neural networks work.

[1]  Zhuoyi Song,et al.  Refractory Sampling Links Efficiency and Costs of Sensory Encoding to Stimulus Statistics , 2014, The Journal of Neuroscience.

[2]  J. H. van Hateren,et al.  Saccadic head and thorax movements in freely walking blowflies , 2004, Journal of Comparative Physiology A.

[3]  Roger C. Hardie,et al.  Novel potassium channels encoded by the Shaker locus in drosophila photoreceptors , 1991, Neuron.

[4]  J. Larimer,et al.  Molecular Separation of Two Behavioral Phenotypes by a Mutation Affecting the Promoters of a Ca-Activated K Channel , 2000, The Journal of Neuroscience.

[5]  P. Sah,et al.  Calcium-Activated Potassium Channels: Multiple Contributions to Neuronal Function , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[6]  P A Fuchs,et al.  Mechanisms of hair cell tuning. , 1999, Annual review of physiology.

[7]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[8]  R. Hardie,et al.  A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse , 1989, Nature.

[9]  P. Hardin,et al.  Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light , 2017, Current Biology.

[10]  J. Skou Nobel Lecture. The identification of the sodium pump. , 1998, Bioscience reports.

[11]  M Heisenberg,et al.  Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. , 1971, The Journal of experimental biology.

[12]  Gonzalo G. de Polavieja,et al.  The Rate of Information Transfer of Naturalistic Stimulation by Graded Potentials , 2003, The Journal of general physiology.

[13]  Mikko Juusola,et al.  Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands , 2011, Proceedings of the National Academy of Sciences.

[14]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[15]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[16]  R. O. Uusitalo,et al.  Tonic transmitter release in a graded potential synapse. , 1995, Journal of neurophysiology.

[17]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[18]  G. Garcia de Polavieja Errors Drive the Evolution of Biological Signalling to Costly Codes , 2001 .

[19]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[20]  F. Zettler,et al.  Active and passive axonal propagation of non-spike signals in the retina ofCalliphora , 1973, Journal of comparative physiology.

[21]  Roger C. Hardie,et al.  Phototransduction Biophysics , 2014, Encyclopedia of Computational Neuroscience.

[22]  K G Götz [Optomoter studies of the visual system of several eye mutants of the fruit fly Drosophila]. , 1964, Kybernetik.

[23]  A S French,et al.  Nonlinear models of the first synapse in the light-adapted fly retina. , 1995, Journal of neurophysiology.

[24]  A. Shearn,et al.  Trans-regulation of thoracic homeotic selector genes of the Antennapedia and bithorax complexes by the trithorax group genes: absent, small, and homeotic discs 1 and 2 , 1995, Mechanisms of Development.

[25]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[26]  Gonzalo G de Polavieja Errors drive the evolution of biological signalling to costly codes. , 2002, Journal of theoretical biology.

[27]  R. Hardie,et al.  Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine , 2016, Front. Neural Circuits.

[28]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[29]  V. Hateren,et al.  Processing of natural time series of intensities by the visual system of the blowfly , 1997, Vision Research.

[30]  L. F. Abbott,et al.  Analysis of Neuron Models with Dynamically Regulated Conductances , 1993, Neural Computation.

[31]  Ian A. Meinertzhagen,et al.  Glutamate, GABA and Acetylcholine Signaling Components in the Lamina of the Drosophila Visual System , 2008, PloS one.

[32]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: I. Response Dynamics and Signaling Efficiency at 25°C , 2001 .

[33]  R. Hardie,et al.  Three classes of potassium channels in large monopolar cells of the blowfly Calliphora vicina , 1990, Journal of Comparative Physiology A.

[34]  Junhai Han,et al.  Phototransduction in Drosophila , 2012, Science China Life Sciences.

[35]  Zheng Lei Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye , 2009 .

[36]  P. Fuchs,et al.  A molecular mechanism for electrical tuning of cochlear hair cells. , 1999, Science.

[37]  S. Shaw Early visual processing in insects. , 1984, The Journal of experimental biology.

[38]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[39]  Zhuoyi Song,et al.  How a fly photoreceptor samples light information in time , 2017, The Journal of physiology.

[40]  R. Brenner,et al.  Tissue-specific expression of a Drosophila calcium-activated potassium channel , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  M. Stocker Ca2+-activated K+ channels: molecular determinants and function of the SK family , 2004, Nature Reviews Neuroscience.

[42]  B. Sabatini,et al.  SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines , 2005, Nature Neuroscience.

[43]  E. Marder,et al.  Activity-dependent regulation of conductances in model neurons. , 1993, Science.

[44]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[45]  Ian A. Meinertzhagen,et al.  Wiring Economy and Volume Exclusion Determine Neuronal Placement in the Drosophila Brain , 2011, Current Biology.

[46]  T. J. Wardill,et al.  Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.

[47]  P. Dolph,et al.  Accumulation of Rhodopsin in Late Endosomes Triggers Photoreceptor Cell Degeneration , 2009, PLoS genetics.

[48]  I. Meinertzhagen,et al.  Direct connections between the R7/8 and R1–6 photoreceptor subsystems in the dipteran visual system , 1989, Cell and Tissue Research.

[49]  T. Lamb Effects of temperature changes on toad rod photocurrents. , 1984, The Journal of physiology.

[50]  M. Slaughter,et al.  Large-Conductance Calcium-Activated Potassium Channels Facilitate Transmitter Release in Salamander Rod Synapse , 2005, The Journal of Neuroscience.

[51]  M. Juusola,et al.  A biomimetic fly photoreceptor model elucidates how stochastic adaptive quantal sampling provides a large dynamic range , 2017, The Journal of physiology.

[52]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[53]  Mikko Vähäsöyrinki,et al.  The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors , 2003, Nature.

[54]  B. Olshausen,et al.  Differential Effects of Apamin- and Charybdotoxin-Sensitive K+ Conductances on Spontaneous Discharge Patterns of Developing Retinal Ganglion Cells , 1999, The Journal of Neuroscience.

[55]  R. O. Uusitalo,et al.  Transfer of graded potentials at the photoreceptor-interneuron synapse , 1995, The Journal of general physiology.

[56]  J. Skou The Identification of the Sodium Pump , 1998, Bioscience reports.

[57]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[58]  A. Moriondo,et al.  Vertebrate rod photoreceptors express both BK and IK calcium‐activated potassium channels, but only BK channels are involved in receptor potential regulation , 2008, Journal of neuroscience research.

[59]  R C Hardie,et al.  Voltage-sensitive potassium channels in Drosophila photoreceptors , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: II. Rising Temperature Increases the Bandwidth of Reliable Signaling , 2001 .

[61]  R. O. Uusitalo,et al.  Graded responses and spiking properties of identified first-order visual interneurons of the fly compound eye. , 1995, Journal of neurophysiology.

[62]  J. H. Hateren,et al.  Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation , 1992, Journal of Comparative Physiology A.

[63]  P. E. Coombe,et al.  The large monopolar cells L1 and L2 are responsible for ERG transients inDrosophila , 1986, Journal of Comparative Physiology A.

[64]  Roger C. Hardie,et al.  Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  J C SKOU,et al.  ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. , 1965, Physiological reviews.

[66]  Mikko Juusola,et al.  Electrophysiological Method for Recording Intracellular Voltage Responses of Drosophila Photoreceptors and Interneurons to Light Stimuli In Vivo , 2016, Journal of visualized experiments : JoVE.

[67]  Mikko Juusola,et al.  Impact of rearing conditions and short-term light exposure on signaling performance in Drosophila photoreceptors. , 2004, Journal of neurophysiology.

[68]  Zhuoyi Song,et al.  Microsaccadic sampling of moving image information provides Drosophila hyperacute vision , 2017, bioRxiv.

[69]  J. Diamond,et al.  BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina , 2009, Nature Neuroscience.

[70]  Z. Kurth-Nelson,et al.  Adenosine-Evoked Hyperpolarization of Retinal Ganglion Cells Is Mediated by G-Protein-Coupled Inwardly Rectifying K+ and Small Conductance Ca2+-Activated K+ Channel Activation , 2009, The Journal of Neuroscience.

[71]  R. Hardie,et al.  Phototransduction in Drosophila Is Compromised by Gal4 Expression but not by InsP3 Receptor Knockdown or Mutation , 2017, eNeuro.

[72]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: II Mechanisms , 2009, PloS one.

[73]  N. Atkinson,et al.  A component of calcium-activated potassium channels encoded by the Drosophila slo locus. , 1991, Science.

[74]  Tingting Wang,et al.  Ih Channels Control Feedback Regulation from Amacrine Cells to Photoreceptors , 2015, PLoS biology.

[75]  黑尔克·阿尔盖尔,et al.  Tissue-specific expression , 2003 .

[76]  P. Sah,et al.  SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala , 2005, Nature Neuroscience.

[77]  Pankaj Sah,et al.  Ca2+-activated K+ currents in neurones: types, physiological roles and modulation , 1996, Trends in Neurosciences.

[78]  R. Hardie,et al.  The Drosophila SK Channel (dSK) Contributes to Photoreceptor Performance by Mediating Sensitivity Control at the First Visual Network , 2011, The Journal of Neuroscience.

[79]  Alexander Borst,et al.  Candidate Glutamatergic Neurons in the Visual System of Drosophila , 2011, PloS one.

[80]  Roger C. Hardie,et al.  Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila , 2006, The Journal of general physiology.

[81]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics , 2009, PloS one.

[82]  S. Benzer,et al.  Behavioral genetics of thermosensation and hygrosensation in Drosophila. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[83]  A Guo,et al.  Choice Behavior of Drosophila Facing Contradictory Visual Cues , 2001, Science.

[84]  Sean R. Eddy,et al.  A genetic, genomic, and computational resource for exploring neural circuit function , 2018, bioRxiv.

[85]  R. Hardie,et al.  Molecular Basis of Amplification in Drosophila Phototransduction Roles for G Protein, Phospholipase C, and Diacylglycerol Kinase , 2002, Neuron.

[86]  Active and Passive Axonal Propagation of Non-Spike Signals in the Retina of Calliphora , 2022 .

[87]  Sean R Eddy,et al.  A genetic, genomic, and computational resource for exploring neural circuit function , 2020, eLife.

[88]  C. Shatz,et al.  Competitive interactions between retinal ganglion cells during prenatal development. , 1990, Journal of neurobiology.

[89]  S. Laughlin,et al.  Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding , 2007, PLoS biology.

[90]  Stephen A. Billings,et al.  Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors , 2012, Current Biology.

[91]  Mikko Vähäsöyrinki,et al.  Robustness of Neural Coding in Drosophila Photoreceptors in the Absence of Slow Delayed Rectifier K+ Channels , 2006, The Journal of Neuroscience.

[92]  M Järvilehto,et al.  Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors , 1994, The Journal of general physiology.

[93]  M. Schnitzer,et al.  GABAergic Lateral Interactions Tune the Early Stages of Visual Processing in Drosophila , 2013, Neuron.

[94]  L. Salkoff A Tail of Multiple Calcium-sensing Domains , 2006, The Journal of general physiology.

[95]  Mikko Juusola,et al.  Band-pass filtering by voltage-dependent membrane in an insect photoreceptor , 1993, Neuroscience Letters.

[96]  Martin Heisenberg,et al.  The three-dimensional optomotor torque system ofDrosophila melanogaster , 1982, Journal of comparative physiology.

[97]  J. Ruppersberg,et al.  Developmental Expression of the Small-Conductance Ca2+-Activated Potassium Channel SK2 in the Rat Retina , 2001, Molecular and Cellular Neuroscience.