Carbonatogenesis: microbial contribution to the conservation of monuments and artwork of stone

Over the last few decades there has been increasing global concern over the deterioration of historical monuments and stone works of art. It has posed a big challenge for the archaeologist, geobiologists and bioconservators and consequently encouraged the search for developing novel preventive and remedial methodologies for safeguarding these sculptural monuments and stone works of art. Many conventional methods which rely on use of physical and chemical treatments have been applied but none of them have yielded satisfactory results. Recently, bioconservation and consolidation methods employing carbonatogenic microbes have received much attention. These microorganisms can precipitate calcium carbonate and, thereby, confer protection to historic monuments. Riassunto Negli ultimi decenni c’e stata una crescente preoccupazione a livello mondiale per quel che concerne il deterioramento dei monumenti storici e dei manufatti lapidei. Questa rappresenta una grande sfida per gli archeologi, geo-biologi e bioconservatori che ha promosso la ricerca e lo sviluppo di nuove metodologie preventive e di recupero finalizzate alla salvaguardia di questi monumenti e opere d’arte scultoree in pietra. Molti metodi convenzionali che si basano sull’uso di trattamenti fisici e chimici sono stati applicati, ma nessuno di essi ha dato risultati soddisfacenti. Recentemente, hanno destato molta attenzione i metodi di bioconservazione e consolidamento che impiegano la carbonato-genesi da microrganismi. Questi sono in grado di indurre la precipitazione di carbonato di calcio e, quindi, conferire protezione ai monumenti storici. Resume Dans ces dernieres decennies, il y a eu une croissante preoccupation au niveau mondial concernant la deterioration des monuments historiques et des ouvrages de pierre. Elle represente un grand defi pour les archeologues, les geo-biologistes et les bio-conservateurs et a promu la recherche et le developpement de nouvelles methodologies preventives et de recuperation finalisees a la sauvegarde de ces monuments et œuvres d’art sculpturales en pierre. De nombreuses methodes conventionnelles qui se basent sur l’usage de traitements physiques et chimiques ont ete appliquees, mais aucune d’elles n’a donne de resultats satisfaisants. Recemment, les methodes de bioconservation et consolidation qui emploient la carbonatogenese de micro-organismes ont suscite beaucoup d’attention. Elles sont en mesure d’induire la precipitation de carbonate de calcium et, donc, de conferer une protection aux monuments historiques. Zusammenfassung Der Verfall historischer Denkmaler und von Steinarbeiten sorgte in den vergangenen zehn Jahren weltweit fur wachsende Besorgnis. Fur Archaologen, Geobiologen und Bio-Konservatoren stellt diese Situation eine grose Herausforderung dar und fungiert als Ausgangspunkt fur die Erforschung und Entwicklung neuer vorbeugender und rekuperativer Methodiken zum Schutz dieser Denkmaler und Steinskulpturen. Viele bisher angewendete und auf physischen sowie chemischen Behandlungen beruhende Verfahren brachten keine zufriedenstellenden Ergebnisse. In der letzten Zeit stiesen in der Biokonservation und Befestigung angewandte Methoden auf groses Interesse, die auf der Karbonatgenese durch Mikroorganismen beruhen. Diese Verfahren sind in der Lage, die Ausfallung von Kalziumkarbonat herbeizufuhren und somit Denkmalern einen Schutz zu verleihen. Resumen En las ultimas decadas hubo una creciente preocupacion a nivel mundial por lo que se refiere al deterioro de los monumentos historicos y de las obras lapideas. Se trata de un gran desafio para los arqueologos, geo-biologos y bioconservadores que ha promovido la investigacion y el desarrollo de nuevas metodologias preventivas y de recuperacion encaminadas a proteger estos monumentos y las obras de arte escultoricas en piedra. Se han aplicado muchos metodos convencionales basados en el uso de tratamientos fisicos y quimicos, pero ninguno de ellos ha logrado resultados satisfactorios. De reciente, han suscitado mucha atencion los metodos de bioconservacion y consolidacion basados en la genesis del carbonato desde microrganismos. Siendo capaces de inducir la precipitacion del carbonato calcico, estos microorganismos pueden proteger los monumentos historicos. Резюме В последние десятилетия во всем мире заметно возрастает тревога по поводу упадка исторических памятников и каменных артефактов. Это большой вызов археологам, геобиологам и биоконсерваторам, который дал начало поиску и развитию новых предохранительных и восстановительных методологий, направленных на сбережение этих памятников и каменных скульптур. Многие традициональные методы, основанные на использовании физических и химических процедур, были применены, но никакой из них не дал удовлетворяющих результатов. В последнее время вызывают большой интерес методы биоконсервации и консолидации, которые используют генезиз карбонатов из микроорганизмов. Они способны вызывать осаждение карбоната кальция и, следовательно, обеспечивать защиту исторических памятников. Ամփոփում Վերջին տասնամյակների ընթացքում աճող մտահոգություն է եղել աշխարհում պատմական հուշարձանների եւ քարարաշեն արտեֆակտների վատթարացման վերաբերյալ Սա մեծ մարտահրավեր է հնագետների, կենսաբանների ու բիոկոնսերվատորների համար, որը նպաստել է հետազոտման եւ զարգացման նոր մեթոդները օգտագործել կանխարգելիչ եւ վերականգնման նպատակով այդ հուշարձանների եւ քարի վրա քանդակված արվեստի գործերի պահպանությանը: Շատ մեթոդներ, որոնք հիմնված են ֆիզիկական եւ քիմիական տեխնիկայի վրա չեն տվել բավարար արդյունք: Վերջերս, մեծ ուշադրություն է գրավել բիոկոնսերվացիան ու ամրապնդումը օգտագործելով միկրոօրգանիզմների կողմից կարբոնատ-ծնող մեթոդներ: Դրանք կարող են առաջացնել կալցիումի կարբոնատի տեղումներ  եւ, հետեւաբար, ուժեղացնել պատմական հուշարձանների պաշտպանությունը:

[1]  F. Palla,et al.  Microscopy and Molecular biology techniques for the study biocenosis diversity in semi-confined environments , 2010 .

[2]  L. D'Acqui,et al.  Biodiversity of Phototrophic Biofilms Dwelling on Monumental Fountains , 2010, Microbial Ecology.

[3]  J. Ettenauer,et al.  Bacterial Community Dynamics During the Application of a Myxococcus xanthus-Inoculated Culture Medium Used for Consolidation of Ornamental Limestone , 2010, Microbial Ecology.

[4]  E. Bedmar,et al.  Bioconservation of Deteriorated Monumental Calcarenite Stone and Identification of Bacteria with Carbonatogenic Activity , 2010, Microbial Ecology.

[5]  Renzo Salimbeni,et al.  Advances in laser cleaning of artwork and objects of historical interest: the optimized pulse duration approach. , 2010, Accounts of chemical research.

[6]  U. Karsten,et al.  Prevention of biofilm growth on man-made surfaces: evaluation of antialgal activity of two biocides and photocatalytic nanoparticles , 2010, Biofouling.

[7]  W. Verstraete,et al.  Use of bacteria to repair cracks in concrete , 2010 .

[8]  S. Dultz,et al.  Role of Fungal Mycelium in the Formation of Carbonate Concretions in Growing Media—An Investigation by SEM and Synchrotron-Based X-Ray Tomographic Microscopy , 2009 .

[9]  S. Lele,et al.  Biocalcification by Bacillus pasteurii urease: a novel application , 2009, Journal of Industrial Microbiology & Biotechnology.

[10]  Caspar Groot,et al.  Selection of plasters and renders for salt laden masonry substrates , 2009 .

[11]  C. Gaylarde,et al.  Microbial deterioration of stone monuments--an updated overview. , 2009, Advances in applied microbiology.

[12]  Monica Favaro,et al.  A novel approach to consolidation of historical limestone: the calcium alkoxides , 2008 .

[13]  Nele De Belie,et al.  Bacterial carbonate precipitation improves the durability of cementitious materials , 2008 .

[14]  Nele De Belie,et al.  Bacterial carbonate precipitation as an alternative surface treatment for concrete , 2008 .

[15]  R. Delgado,et al.  Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media: Influence of salt concentration , 2008, Folia Microbiologica.

[16]  A. Sprocati,et al.  A MICROBIOLOGICAL SURVEY OF THE ETRUSCAN MERCARECCIA TOMB (ITALY): CONTRIBUTION OF MICROORGANISMS TO DETERIORATION AND RESTORATION , 2008 .

[17]  C. Rodriguez-Navarro,et al.  Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. , 2007, Chemosphere.

[18]  Antonio Sansonetti,et al.  Advantages of Using Microbial Technology over Traditional Chemical Technology in Removal of Black Crusts from Stone Surfaces of Historical Monuments , 2007, Applied and Environmental Microbiology.

[19]  P. Jacobs,et al.  The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates , 2007 .

[20]  C. Nakatsu Soil Microbial Community Analysis Using Denaturing Gradient Gel Electrophoresis , 2007 .

[21]  A. Galizzi,et al.  Bacillus subtilis Gene Cluster Involved in Calcium Carbonate Biomineralization , 2006, Journal of bacteriology.

[22]  F. Palla,et al.  Chromatic alteration on marble surfaces analysed by molecular biology tools , 2007 .

[23]  G. Gadd,et al.  Biomineralization of Fungal Hyphae with Calcite (CaCO3) and Calcium Oxalate Mono- and Dihydrate in Carboniferous Limestone Microcosms , 2006 .

[24]  Brady D. Lee,et al.  Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807. , 2006, Bioresource technology.

[25]  P. Fernandes,et al.  Applied microbiology and biotechnology in the conservation of stone cultural heritage materials , 2006, Applied Microbiology and Biotechnology.

[26]  H. Alakomi,et al.  Weakening Effect of Cell Permeabilizers on Gram-Negative Bacteria Causing Biodeterioration , 2006, Applied and Environmental Microbiology.

[27]  E. May,et al.  Bioremediation of weathered-building stone surfaces. , 2006, Trends in biotechnology.

[28]  Francesca Cappitelli,et al.  Improved Methodology for Bioremoval of Black Crusts on Historical Stone Artworks by Use of Sulfate-Reducing Bacteria , 2006, Applied and Environmental Microbiology.

[29]  J. Mckenzie,et al.  Microbially induced calcite precipitation in culture experiments : Possible origin for stalactites in Sahastradhara caves, Dehradun, India , 2006 .

[30]  W. Verstraete,et al.  Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species , 2006, Biodegradation.

[31]  R. Mitchell,et al.  Microbial deterioration of historic stone , 2005 .

[32]  Fabio Fratini,et al.  A new portable system for determining the state of conservation of monumental stones , 2005 .

[33]  Willy Verstraete,et al.  Cleaning of concrete fouled by lichens with the aid of Thiobacilli , 2005 .

[34]  C. Sorlini,et al.  Art‐loving bugs: The resurrection of Spinello Aretino from Pisa's cemetery , 2005, Proteomics.

[35]  Kyle C. Normandin,et al.  Masonry Cleaning Technologies , 2005 .

[36]  C. Sorlini,et al.  Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes , 2005, Journal of applied microbiology.

[37]  R.P.J. van Hees,et al.  Monitoring of the moisture and salt load in restoration plasters in St.-Barbara' s church in Culemborg , 2005 .

[38]  G. Cappuccio,et al.  Involvement of Microorganisms in the Formation of Carbonate Speleothems in the Cervo Cave (L'Aquila-Italy) , 2004 .

[39]  Tiina Mattila-Sandholm,et al.  Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi , 2004 .

[40]  D. Allsopp,et al.  Introduction to Biodeterioration: The Control of Biodeterioration , 2004 .

[41]  R. Delgado,et al.  Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. , 2004, FEMS microbiology ecology.

[42]  G. Gadd,et al.  Fungal involvement in bioweathering and biotransformation of rocks and minerals , 2003, Mineralogical Magazine.

[43]  Young Nam Lee,et al.  Calcite Production by Bacillus amyloliquefaciens CMB01 , 2003 .

[44]  Willy Verstraete,et al.  Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation , 2003, Applied and Environmental Microbiology.

[45]  Jeanne Marie Teutonico,et al.  A review of selected inorganic consolidants and protective treatments for porous calcareous materials , 2003 .

[46]  N. Duran,et al.  Bioluminescent bacteria: lux genes as environmental biosensors , 2003 .

[47]  C. Rodriguez-Navarro,et al.  Conservation of Ornamental Stone by Myxococcus xanthus-Induced Carbonate Biomineralization , 2003, Applied and Environmental Microbiology.

[48]  G. Cappuccio,et al.  Calcium Carbonate Precipitation by Bacterial Strains Isolated from a Limestone Cave and from a Loamy Soil , 2003 .

[49]  W. Verstraete,et al.  Key roles of pH and calcium metabolism in microbial carbonate precipitation , 2002 .

[50]  S. Bang,et al.  Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. , 2001, Enzyme and microbial technology.

[51]  S. Bang,et al.  Remediation of Concrete Using Micro-Organisms , 2001 .

[52]  W. Lubitz,et al.  Identification of archaea in objects of art by denaturing gradient gel electrophoresis analysis and shotgun cloning. , 2001, Methods in enzymology.

[53]  Dario Camuffo,et al.  Carbonate Stone: Chemical Behaviour, Durability and Conservation , 2000 .

[54]  J. Mckenzie,et al.  Bacterially induced dolomite precipitation in anoxic culture experiments , 2000 .

[55]  J. Braams,et al.  Biodeterioration of stone: a review , 2000 .

[56]  A. Gorbushina,et al.  PATINA Physical and Chemical Interactions of Sub-aerial Biofilms with Objects of Art , 2000 .

[57]  S. Castanier,et al.  Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony , 1999 .

[58]  S. Castanier,et al.  Ca-carbonates precipitation and limestone genesis — the microbiogeologist point of view , 1999 .

[59]  D. T. Wright,et al.  The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia , 1999 .

[60]  G. Mastromei,et al.  Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. , 1999, Journal of microbiological methods.

[61]  Claudia Sorlini,et al.  The use of microorganisms for the removal of sulphates on artistic stoneworks , 1997 .

[62]  Cesáreo Sáiz-Jiménez,et al.  Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buidlings , 1997 .

[63]  Geneviève Orial,et al.  The biomineralization: a new process to protect calcareous stone; applied to historic monuments , 1993 .

[64]  V. Appanna,et al.  A novel role for calcite in calcium homeostasis , 1992, FEBS letters.

[65]  C. Price The consolidation of limestone using a lime poultice and limewater , 1984 .

[66]  J. Novitsky Calcium carbonate precipitation by marine bacteria , 1981 .

[67]  A. Boronat,et al.  Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon , 1973, Nature.