A geometric approach to the theory of nonnegative matrices
暂无分享,去创建一个
[1] N. Pullman. The Geometry of Finite Markov Chains , 1965, Canadian Mathematical Bulletin.
[2] A. Brauer. A new proof of theorems of Perron and Frobenius on non-negative matrices: I. Positive matrices , 1957 .
[3] H. Wielandt. Unzerlegbare, nicht negative Matrizen , 1950 .
[4] J. Vandergraft. Spectral properties of matrices which have invariant cones , 1968 .
[5] K. Fan. Topological proofs for certain theorems on matrices with non-negative elements , 1958 .
[6] G. Debreu,et al. Nonnegative Square Matrices , 1953 .
[7] On a theorem of Frobenius. , 1952 .
[8] M. Kreĭn,et al. Linear operators leaving invariant a cone in a Banach space , 1950 .
[9] H. Samelson. On the Perron-Frobenius theorem. , 1957 .
[10] S. Foguel. On order preserving contractions , 1963 .
[11] Generalizations of the Frobenius‐Wielandt Theorems for Non‐Negative Square Matrices , 1961 .
[12] O. Perron. Zur Theorie der Matrices , 1907 .