A classification of certain group-like FL$$_e$$e-chains

Classification of certain group-like FL$$_e$$e-chains is given: We define absorbent-continuity of FL$$_e$$e-algebras, along with the notion of subreal chains, and classify absorbent-continuous, group-like FL$$_e$$e-algebras over subreal chains: The algebra is determined by its negative cone, and the negative cone can only be chosen from a certain subclass of BL-chains, namely, one with components which are either cancellative (that is, those components are negative cones of totally ordered Abelian groups) or two-element MV-algebras, and with no two consecutive cancellative components. It is shown that the classification theorem does not hold if we drop the absorbent-continuity condition. Our result is the first classification theorem in the literature on FL$$_e$$e-algebras that does not assume the condition of being naturally ordered (which, under certain conditions, corresponds to continuity of the monoid operation). In our classification theorem, continuity is replaced by the much weaker absorbent-continuity.

[1]  Franco Montagna,et al.  Strongly involutive uninorm algebras , 2013, J. Log. Comput..

[2]  Sándor Jenei,et al.  On the reflection invariance of residuated chains , 2009, Ann. Pure Appl. Log..

[3]  Franco Montagna,et al.  On the Standard and Rational Completeness of some Axiomatic Extensions of the Monoidal T-norm Logic , 2002, Stud Logica.

[4]  Rostislav Horcík Standard completeness theorem for ΠMTL , 2005, Arch. Math. Log..

[5]  Peter Vámos,et al.  Divisibility theory in commutative rings: Bezout monoids , 2012 .

[6]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[7]  Franco Montagna,et al.  Embedding theorems for classes of GBL-algebras , 2010 .

[8]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Sándor Jenei,et al.  Structure of left-continuous triangular norms with strong induced negations. (III): Construction and decomposition , 2002, Fuzzy Sets Syst..

[10]  R. L. Vaught Kochen Simon. Completeness of algebraic systems in higher order calculi. Summaries of talks presented at the Summer Institute for Symbolic Logic, Cornell University, 1957 , 2nd edn., Communications Research Division, Institute for Defense Analyses, Princeton, N.J., 1960, pp. 370–376. , 1962 .

[11]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[12]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[13]  Franco Montagna,et al.  Substructural fuzzy logics , 2007, Journal of Symbolic Logic.

[14]  S. Jenei On the Geometry of Associativity , 2007 .

[15]  Franco Montagna,et al.  A Proof of Standard Completeness for Esteva and Godo's Logic MTL , 2002, Stud Logica.

[16]  Lluis Godo,et al.  Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..

[17]  Sándor Jenei,et al.  On involutive FLe-monoids , 2012, Arch. Math. Log..

[18]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[19]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[20]  L. Fuchs Partially Ordered Algebraic Systems , 2011 .

[21]  Petr Hájek,et al.  A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..

[22]  Petr Hájek,et al.  Observations on the monoidal t-norm logic , 2002, Fuzzy Sets Syst..

[23]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[24]  P. Aglianò,et al.  Varieties of BL- algebras I: General properties. , 2003 .

[25]  Sándor Jenei,et al.  Structural Description of a Class of Involutive Uninorms via Skew Symmetrization , 2011, J. Log. Comput..

[26]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[27]  Petr Hájek,et al.  Handbook of mathematical fuzzy logic , 2011 .

[28]  Sándor Jenei,et al.  Structure of left-continuous triangular norms with strong induced negations (I) Rotation construction , 2000, J. Appl. Non Class. Logics.

[29]  Bernard De Baets,et al.  The triple rotation method for constructing t-norms , 2007, Fuzzy Sets Syst..

[30]  Josep Maria Font,et al.  A NOTE ON SUGIHARA ALGEBRAS , 1992 .

[31]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[32]  Wieslaw Dziobiak,et al.  On the lattice of quasivarieties of Sugihara algebras , 1986, Stud Logica.

[33]  Bruno Bosbach,et al.  Komplementäre Halbgruppen. Axiomatik und Arithmetik , 1969 .

[34]  Sándor Jenei Erratum to "On the reflection invariance of residuated chains" [Ann. Pure Appl. Logic 161 (2009) 220-227] , 2010, Ann. Pure Appl. Log..

[35]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[36]  Hiroakira Ono,et al.  Structural Rules and a Logical Hierarchy , 1990 .

[37]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[38]  Bernard De Baets,et al.  On the structure of left-continuous t-norms that have a continuous contour line , 2007, Fuzzy Sets Syst..

[39]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[40]  A. H. Clifford,et al.  Naturally Totally Ordered Commutative Semigroups , 1954 .

[41]  S. Jenei,et al.  On the continuity points of left-continuous t-norms , 2003, Arch. Math. Log..