On reducing interface curvature computation errors in the height function technique

A detailed analysis of the errors involved in computing the interface curvature from volume fraction distributions using a height function technique is presented. An improved version of the height function technique is proposed, based on introducing a correction of the height function discretization error estimated from the local osculating spheres at interface points. By using this error correction and an appropriate discretization of the partial derivatives of the height function, a substantial improvement in the accuracy of the interface curvature computation can be efficiently achieved.

[1]  S. Cummins,et al.  Estimating curvature from volume fractions , 2005 .

[2]  Eugenio Aulisa,et al.  A novel representation of the surface tension force for two-phase flow with reduced spurious currents , 2006 .

[3]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[4]  S. Afkhami,et al.  Height functions for applying contact angles to 2D VOF simulations , 2008 .

[5]  W. Shyy,et al.  Assessment of volume of fluid and immersed boundary methods for droplet computations , 2004 .

[6]  F. Faura,et al.  A new volume of fluid method in three dimensions—Part I: Multidimensional advection method with face‐matched flux polyhedra , 2008 .

[7]  J. López,et al.  A volume of fluid method based on multidimensional advection and spline interface reconstruction , 2004 .

[8]  Julio Hernández,et al.  Analytical and geometrical tools for 3D volume of fluid methods in general grids , 2008, J. Comput. Phys..

[9]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[10]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[11]  Mark Sussman,et al.  A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow , 2009, SIAM J. Sci. Comput..

[12]  Marianne M. Francois,et al.  Interface curvature via volume fractions, heights, and mean values on nonuniform rectangular grids , 2010, J. Comput. Phys..

[13]  F. Faura,et al.  An improved height function technique for computing interface curvature from volume fractions , 2009 .

[14]  C. W. Hirt,et al.  NASA-VOF2D: A computer program for incompressible ows with free surfaces , 1985 .

[15]  T. Sundararajan,et al.  A Quadratic Spline based Interface (QUASI) reconstruction algorithm for accurate tracking of two-phase flows , 2009, J. Comput. Phys..

[16]  Markus Bussmann,et al.  Adaptive VOF with curvature‐based refinement , 2007 .

[17]  P. Colella,et al.  Non-convex profile evolution in two dimensions using volume of fluids , 1997 .

[18]  Ranga Narayanan,et al.  Fluid Dynamics at Interfaces , 2010 .

[19]  Mark Sussman,et al.  High-order Techniques for Calculating Surface Tension Forces , 2022 .

[20]  Alexandre J. Chorin,et al.  Curvature and solidification , 1985 .

[21]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[22]  G. Wittum,et al.  Two-Phase Flows on Interface Refined Grids Modeled with VOF, Staggered Finite Volumes, and Spline Interpolants , 2001 .