Error analysis for the elastic flow of parametrized curves

We analyze a semidiscrete numerical scheme for approximating the evolution of parametric curves by elastic flow in R n . The fourth order equation is split into two coupled second order problems, which are approximated by linear finite elements. We prove error bounds for the resulting scheme and present numerical test calculations that confirm our analysis.

[1]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[2]  Ludger Rüschendorf,et al.  Convex ordering criteria for Lévy processes , 2007, Adv. Data Anal. Classif..

[3]  Paola Pozzi,et al.  Anisotropic curve shortening flow in higher codimension , 2007 .

[4]  Harald Garcke,et al.  A parametric finite element method for fourth order geometric evolution equations , 2007, J. Comput. Phys..

[5]  Ulrich Reif,et al.  Stability of B-Splines on Bounded Domains , 2022 .

[6]  Christian Kreuzer,et al.  Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..

[7]  Ludger Ruschendorf,et al.  On a class of optimal stopping problems for diffusions with discontinuous coefficients. , 2008, 0806.2561.

[8]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[9]  S. Goette,et al.  The Extended Bloch Group and the Cheeger-Chern-Simons Class , 2007, 0705.0500.

[10]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[11]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[12]  Paola Pozzi,et al.  Anisotropic mean curvature flow for two-dimensional surfaces in higher codimension: a numerical scheme , 2008 .

[13]  Gerhard Dziuk,et al.  Evolution of Elastic Curves in Rn: Existence and Computation , 2002, SIAM J. Math. Anal..

[14]  Charles M. Elliott,et al.  Eulerian finite element method for parabolic PDEs on implicit surfaces , 2008 .

[15]  C. M. Elliott,et al.  An Eulerian level set method for partial differential equations on evolving surfaces , 2007 .

[16]  C. Rohde,et al.  THE SHARP-INTERFACE APPROACH FOR FLUIDS WITH PHASE CHANGE: RIEMANN PROBLEMS AND GHOST FLUID TECHNIQUES , 2007 .

[17]  Gerhard Dziuk,et al.  Error analysis of a finite element method for the Willmore flow of graphs , 2006 .

[18]  Bernard Haasdonk,et al.  Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations , 2006 .