Exploiting Text Mining Techniques for Contextual Recommendations

Unlike traditional recommender systems, which make recommendations only by using the relation between users and items, a context-aware recommender system makes recommendations by incorporating available contextual information into the recommendation process. One problem of context-aware approaches is that it is required techniques to extract such additional information in an automatic manner. In this paper, we propose to use two text mining techniques which are applied to textual data to infer contextual information automatically: named entities recognition and topic hierarchies. We evaluate the proposed technique in four context-aware recommender systems. The empirical results demonstrate that by using named entities and topic hierarchies we can provide better recommendations.

[1]  Raquel Martínez Unanue,et al.  NESM: a named entity based proximity measure for multilingual news clustering , 2012 .

[2]  Ellen M. Voorhees,et al.  TREC: Experiment and Evaluation in Information Retrieval (Digital Libraries and Electronic Publishing) , 2005 .

[3]  W. Bruce Croft,et al.  Deriving concept hierarchies from text , 1999, SIGIR '99.

[4]  Anind K. Dey,et al.  Understanding and Using Context , 2001, Personal and Ubiquitous Computing.

[5]  Udo Kruschwitz,et al.  Automatically structuring domain knowledge from text: An overview of current research , 2012, Inf. Process. Manag..

[6]  S. Sekine Named Entity : History and Future , 2004 .

[7]  Patrick Brézillon,et al.  Understanding Context Before Using It , 2005, CONTEXT.

[8]  Ricardo M. Marcacini,et al.  On the Use of Consensus Clustering for Incremental Learning of Topic Hierarchies , 2012, SBIA.

[9]  Rich Caruana,et al.  Consensus Clusterings , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[10]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[11]  Marcos Aurélio Domingues,et al.  Dimensions as Virtual Items: Improving the predictive ability of top-N recommender systems , 2013, Inf. Process. Manag..

[12]  Bamshad Mobasher,et al.  Context-Aware Recommendation Based On Review Mining , 2011, ITWP@IJCAI.

[13]  Soto Montalvo,et al.  NESM: a Named Entity based Proximity Measure for Multilingual News Clustering , 2012, Proces. del Leng. Natural.

[14]  Yi Zhang,et al.  Contextual Recommendation based on Text Mining , 2010, COLING.

[15]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[16]  Marc Moens,et al.  Named Entity Recognition without Gazetteers , 1999, EACL.

[17]  Gobinda G. Chowdhury,et al.  TREC: Experiment and Evaluation in Information Retrieval , 2007 .

[18]  Joel Nothman,et al.  Learning multilingual named entity recognition from Wikipedia , 2013, Artif. Intell..

[19]  Ricardo M. Marcacini,et al.  Incremental Construction of Topic Hierarchies using Hierarchical Term Clustering , 2010, SEKE.

[20]  Alexander Tuzhilin,et al.  Using Context to Improve Predictive Modeling of Customers in Personalization Applications , 2008, IEEE Transactions on Knowledge and Data Engineering.

[21]  José Luis Vicedo González,et al.  TREC: Experiment and evaluation in information retrieval , 2007, J. Assoc. Inf. Sci. Technol..

[22]  Paul Dourish,et al.  What we talk about when we talk about context , 2004, Personal and Ubiquitous Computing.

[23]  Pasquale Lops,et al.  Knowledge infusion into content-based recommender systems , 2009, RecSys '09.

[24]  Nuno Cardoso REMBRANDT - Reconhecimento de Entidades Mencionadas Baseado em Relações e ANálise Detalhada do Texto , 2009 .

[25]  Michele Gorgoglione,et al.  Incorporating context into recommender systems: an empirical comparison of context-based approaches , 2012, Electronic Commerce Research.

[26]  Gediminas Adomavicius,et al.  Context-aware recommender systems , 2008, RecSys '08.

[27]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[28]  Charu C. Aggarwal,et al.  A Survey of Text Clustering Algorithms , 2012, Mining Text Data.

[29]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.