Color Image Segmentation in a Quaternion Framework

In this paper, we present a feature/detail preserving color image segmentation framework using Hamiltonian quaternions. First, we introduce a novel Quaternionic Gabor Filter (QGF) which can combine the color channels and the orientations in the image plane. Using the QGFs, we extract the local orientation information in the color images. Second, in order to model this derived orientation information, we propose a continuous mixture of appropriate hypercomplex exponential basis functions. We derive a closed form solution for this continuous mixture model. This analytic solution is in the form of a spatially varying kernel which, when convolved with the signed distance function of an evolving contour (placed in the color image), yields a detail preserving segmentation.

[1]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..

[2]  Thomas Bülow,et al.  Multi-Dimensional Signal Processin Using an Algebraically Extended Signal Representation , 1997, AFPAC.

[3]  S. Sangwine Fourier transforms of colour images using quaternion or hypercomplex, numbers , 1996 .

[4]  Baba C. Vemuri,et al.  Multi-fiber Reconstruction from Diffusion MRI Using Mixture of Wisharts and Sparse Deconvolution , 2007, IPMI.

[5]  Stephen J. Sangwine,et al.  Colour image filters based on hypercomplex convolution , 2000 .

[6]  M. J. Prentice Orientation Statistics Without Parametric Assumptions , 1986 .

[7]  Baba C. Vemuri,et al.  A Unified Computational Framework for Deconvolution to Reconstruct Multiple Fibers From Diffusion Weighted MRI , 2007, IEEE Transactions on Medical Imaging.

[8]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[9]  C. Herz BESSEL FUNCTIONS OF MATRIX ARGUMENT , 1955 .

[10]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[11]  Jack B. Kuipers,et al.  Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality , 2002 .

[12]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2007, IEEE Trans. Image Process..

[13]  Baba C. Vemuri,et al.  Image segmentation via convolution of a level-set function with a Rigaut Kernel , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Baba C. Vemuri,et al.  Feature Preserving Image Smoothing Using a Continuous Mixture of Tensors , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Marl A Delsuc,et al.  Spectral Representation of 2D NMR Spectra by Hypercomplex Numbers , 1988 .

[16]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[17]  Stephen J. Sangwine,et al.  Colour image edge detector based on quaternion convolution , 1998 .

[18]  B. Sundar Rajan,et al.  Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.

[19]  C. Eddie Moxey,et al.  Hypercomplex correlation techniques for vector images , 2003, IEEE Trans. Signal Process..

[20]  T. Ell,et al.  Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[21]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Soo-Chang Pei,et al.  A novel block truncation coding of color images by using quaternion-moment-preserving principle , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[23]  Baba C. Vemuri,et al.  A novel tensor distribution model for the diffusion-weighted MR signal , 2007, NeuroImage.

[24]  Jan J. Koenderink,et al.  Algebraic Frames for the Perception-Action Cycle , 1997, Lecture Notes in Computer Science.

[25]  Thomas Bülow,et al.  Das Konzept einer zweidimensionalen Phase unter Verwendung einer algebraisch erweiterten Signalrepräsentation , 1997, DAGM-Symposium.