Physico-chemical characterizations of Cr doped persistent luminescence nanoparticles

Persistent luminescence nanoparticles have recently been proposed as innovative optical probes for small animal in vivo imaging. The main advantage of such probes is their ability to emit light for a long time after the end of their excitation, allowing in vivo imaging with low background. This work reports new information on the physico-chemical characterizations of Cr doped ZnGa2O4 nanoprobes in terms of synthetic procedure, luminescence properties as well as colloidal stabilities in different aqueous media and over the time.

[1]  Jorma Hölsä,et al.  Role of defect states in persistent luminescence materials , 2004 .

[2]  D. Scherman,et al.  Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability. , 2012, International journal of pharmaceutics.

[3]  Feng Liu,et al.  Photostimulable Near-Infrared Persistent Luminescent Nanoprobes for Ultrasensitive and Longitudinal Deep-Tissue Bio-Imaging , 2014, Theranostics.

[4]  Wieslaw Strek,et al.  Persistent luminescence phenomena in materials doped with rare earth ions , 2003 .

[5]  P. Smet,et al.  Persistent Luminescence in Eu2+-Doped Compounds: A Review , 2010, Materials.

[6]  Thomas Maldiney,et al.  Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging , 2016 .

[7]  Thomas Maldiney,et al.  Gadolinium‐Doped Persistent Nanophosphors as Versatile Tool for Multimodal In Vivo Imaging , 2015 .

[8]  M. Nikl,et al.  Intrinsic defects, nonstoichiometry, and aliovalent doping of A 2+ B 4+ O 3 perovskite scintillators , 2014 .

[9]  Nobuyoshi Takeuchi,et al.  A New Long Phosphorescent Phosphor with High Brightness, SrAl2 O 4 : Eu2 + , Dy3 + , 1996 .

[10]  I. D. Baere,et al.  Mechanoluminescence in BaSi2O2N2:Eu , 2012 .

[11]  J. Ueda,et al.  A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors , 2014 .

[12]  Seppo Ylä-Herttuala,et al.  In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. , 2012, Bioconjugate chemistry.

[13]  D. Scherman,et al.  Design, Properties, and In Vivo Behavior of Super-paramagnetic Persistent Luminescence Nanohybrids. , 2015, Small.

[14]  Didier Gourier,et al.  Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. , 2011, Journal of the American Chemical Society.

[15]  A. Varenne,et al.  Functionalization and characterization of persistent luminescence nanoparticles by dynamic light scattering, laser Doppler and capillary electrophoresis. , 2015, Colloids and surfaces. B, Biointerfaces.

[16]  B. Viana,et al.  Persistent luminescence in ZnGa2O4:Cr: an outstanding biomarker for in-vivo imaging , 2014, OPTO.

[17]  M. Lastusaari,et al.  Persistent luminescence mechanisms: human imagination at work , 2012 .

[18]  Sunil Kumar Singh Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications , 2014 .

[19]  Didier Gourier,et al.  Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence , 2016 .

[20]  L. Motte,et al.  Non-aqueous sol-gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. , 2015, Chemistry.

[21]  P. Smet,et al.  Photometry in the dark: time dependent visibility of low intensity light sources. , 2010, Optics express.

[22]  Daniel Scherman,et al.  Silicates doped with luminescent ions: useful tools for optical imaging applications , 2009, BiOS.

[23]  D. Scherman,et al.  In vivo imaging with persistent luminescence silicate-based nanoparticles , 2013 .

[24]  D. Scherman,et al.  Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery. , 2014, Nanoscale.

[25]  Daniel Jaque,et al.  Inorganic nanoparticles for optical bioimaging , 2016 .

[26]  D. Scherman,et al.  Controlling aminosilane layer thickness to extend the plasma half-life of stealth persistent luminescence nanoparticles in vivo. , 2015, Journal of materials chemistry. B.

[27]  P. Smet,et al.  Revealing trap depth distributions in persistent phosphors , 2013 .

[28]  D. Scherman,et al.  In vivo optical imaging with rare earth doped Ca_2Si_5N_8 persistent luminescence nanoparticles , 2012 .

[29]  Thomas Maldiney,et al.  Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. , 2011, ACS nano.

[30]  Didier Gourier,et al.  Storage of Visible Light for Long-Lasting Phosphorescence in Chromium-Doped Zinc Gallate , 2014 .

[31]  B. Viana,et al.  Optical properties and storage capabilities in AB2O4:Cr3+ (A=Zn, Mg, B=Ga, Al) , 2014, Photonics West - Optoelectronic Materials and Devices.

[32]  Didier Gourier,et al.  The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. , 2014, Nature materials.

[33]  D. Scherman,et al.  Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: New biomarkers for in vivo imaging , 2014 .

[34]  Didier Gourier,et al.  Nanoprobes with near-infrared persistent luminescence for in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[35]  P. Dorenbos,et al.  Lanthanide energy levels in YPO4 , 2008 .

[36]  Zhengwei Pan,et al.  Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates. , 2011, Nature materials.

[37]  Bruno Viana,et al.  Trap depth optimization to improve optical properties of diopside-based nanophosphors for medical imaging , 2012, OPTO.