Fractional Adams–Moser–Trudinger type inequalities

Abstract Extending several works, we prove a general Adams–Moser–Trudinger type inequality for the embedding of Bessel-potential spaces H n p , p ( Ω ) into Orlicz spaces for an arbitrary domain Ω with finite measure. In particular we prove sup u ∈ H n p , p ( Ω ) , ‖ ( − Δ ) n 2 p u ‖ L p ( Ω ) ≤ 1 ∫ Ω e α n , p | u | p p − 1 d x ≤ c n , p | Ω | , for a positive constant α n , p whose sharpness we also prove. We further extend this result to the case of Lorentz-spaces (i.e. ( − Δ ) n 2 p u ∈ L ( p , q ) ). The proofs are simple, as they use Green functions for fractional Laplace operators and suitable cut-off procedures to reduce the fractional results to the sharp estimate on the Riesz potential proven by Adams and its generalization proven by Xiao and Zhai. We also discuss an application to the problem of prescribing the Q -curvature and some open problems.

[1]  T. Kuusi,et al.  Nonlocal Equations with Measure Data , 2014, 1406.7432.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Marco Squassina,et al.  1/2-Laplacian problems with exponential nonlinearity , 2013, 1310.7785.

[4]  L. Martinazzi Conformal metrics on $\R^{2m}$ with constant Q-curvature , 2008, 0805.0749.

[5]  L. Martinazzi Classification of solutions to the higher order Liouville’s equation on $${\mathbb{R}^{2m}}$$ , 2008, 0801.2729.

[6]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[7]  D. Adams A sharp inequality of J. Moser for higher order derivatives , 1988 .

[8]  Juncheng Wei,et al.  Asymptotic behavior of a nonlinear fourth order eigenvalue problem , 1996 .

[9]  Chang-Shou Lin,et al.  A classification of solutions of a conformally invariant fourth order equation in Rn , 1998 .

[10]  Daniele Cassani,et al.  A Moser-type inequality in Lorentz-Sobolev spaces for unbounded domains in RN , 2009, Asymptot. Anal..

[11]  L. Fontana,et al.  Adams inequalities on measure spaces , 2009, 0906.5103.

[12]  L. Martinazzi,et al.  Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three , 2013, 1309.4299.

[13]  Haim Brezis,et al.  Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .

[14]  L. Martinazzi,et al.  Blow-up behavior of a fractional Adams–Moser–Trudinger-type inequality in odd dimension , 2015, 1504.00254.

[15]  L. Fontana Sharp borderline Sobolev inequalities on compact Riemannian manifolds , 1993 .

[16]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[17]  A. Hyder Existence of entire solutions to a fractional Liouville equation in $\mathbb R^n$ , 2015, 1502.02685.

[18]  G.Mancini,et al.  Moser-Trudinger inequality on conformal discs , 2009, 0910.0971.

[19]  Gerd Grubb,et al.  Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators , 2013, 1310.0951.

[20]  Richard O’Neil,et al.  Convolution operators and $L(p,q)$ spaces , 1963 .

[21]  S. Superiore Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-laplacian , 2007 .

[22]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[23]  T. Kuusi,et al.  Nonlocal self-improving properties , 2015 .

[24]  M. Kiessling,et al.  Surfaces with prescribed Gauss curvature , 2000 .

[25]  立川 篤,et al.  M. Giaquinta and L. Martinazzi: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Appunti. Sc. Norm. Super. Pisa (N.S.)., 2, Edizioni della Normale, 2005年,xii + 302ページ. , 2008 .

[26]  Ali Maalaoui,et al.  A fractional Moser-Trudinger type inequality in one dimension and its critical points , 2015, Differential and Integral Equations.

[27]  D. Ye,et al.  Nonradial solutions for conformally invariant fourth order equation in $\R4$ , 2007 .

[28]  Haim Brezis,et al.  A note on limiting cases of sobolev embeddings and convolution inequalities , 1980 .

[29]  D. Ye,et al.  Nonradial solutions for a conformally invariant fourth order equation in $$\mathbb {R}^4$$ , 2008 .

[30]  Tokushi Sato,et al.  Upper bound of the best constant of a trudinger-moser inequality and its application to A Gagliardo-Nirenberg inequality , 2004 .

[31]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[32]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[33]  L. Martinazzi,et al.  Blow-up analysis of a nonlocal Liouville-type equation , 2015, 1503.08701.

[34]  T. Ozawa On critical cases of Sobolev inequalities , 1992 .

[35]  B. Ruf,et al.  A sharp Trudinger-Moser type inequality for unbounded domains in R 2 , 2005 .

[36]  Adimurthi Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian , 1990 .

[37]  Nicola Abatangelo Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian , 2013, 1310.3193.

[38]  Luca Battaglia,et al.  Remarks on the Moser–Trudinger inequality , 2013, 1307.0746.

[39]  Renming Song,et al.  Estimates on Green functions and Poisson kernels for symmetric stable processes , 1998 .

[40]  Neil S. Trudinger,et al.  On Imbeddings into Orlicz Spaces and Some Applications , 1967 .

[41]  G. Lu,et al.  A new approach to sharp Moser–Trudinger and Adams type inequalities: A rearrangement-free argument , 2013 .

[42]  J. Xiao,et al.  Fractional Sobolev, Moser–Trudinger, Morrey–Sobolev inequalities under Lorentz norms , 2010 .

[43]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[44]  Moritz Kassmann,et al.  The Dirichlet problem for nonlocal operators , 2013, 1309.5028.

[45]  A. Alberico Moser Type Inequalities for Higher-Order Derivatives in Lorentz Spaces , 2008 .

[46]  O. Lakkis Existence of solutions for a class of semilinear polyharmonic equations with critical exponential growth , 1999, Advances in Differential Equations.

[47]  L. Martinazzi,et al.  Classification of solutions to the higher order Liouville ’ s equation on R 2 m , 2009 .

[48]  A. Hyder Structure of conformal metrics on $\mathbb{R}^n$ with constant $Q$-curvature , 2015, Differential and Integral Equations.

[49]  M. Giaquinta,et al.  An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs , 2005 .

[50]  Wenxiong Chen,et al.  A note on a class of higher order conformally covariant equations , 2001 .

[51]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .