Effect of aggregated silver nanoparticles on luminol chemiluminescence system and its analytical application.

[1]  M. Albrecht,et al.  Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength , 1979 .

[2]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[3]  Prashant V. Kamat,et al.  Photophysical, photochemical and photocatalytic aspects of metal nanoparticles , 2002 .

[4]  Rakesh K. Sharma,et al.  Size-dependent catalytic behavior of platinum nanoparticles on the hexacyanoferrate(III)/thiosulfate redox reaction. , 2003, Journal of colloid and interface science.

[5]  M. Karimi,et al.  Flow injection determination of isoniazid using N-bromosuccinimide- and N-chlorosuccinimide-luminol chemiluminescence systems. , 2003, Journal of pharmaceutical and biomedical analysis.

[6]  Daoben Zhu,et al.  Preparation of silver nanocrystals in the presence of aniline. , 2003, Journal of colloid and interface science.

[7]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[8]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[9]  Hua Cui,et al.  Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. , 2005, Analytical chemistry.

[10]  Yuning Li,et al.  Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. , 2005, Journal of the American Chemical Society.

[11]  Itamar Willner,et al.  Pt nanoparticles functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins. , 2006, Small.

[12]  Jinghong Li,et al.  In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. , 2006, Clinical chemistry.

[13]  C. Huang,et al.  Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. , 2006, Analytical chemistry.

[14]  P. Gupta,et al.  Hyper-Rayleigh scattering and continuum generation of salt induced aggregates of Silver nanoparticles: The effect of cation size (Li+, Na+ and K+) , 2006 .

[15]  J. Lakowicz,et al.  Metal-Enhanced Chemiluminescence , 2006, Journal of Fluorescence.

[16]  D. Cui,et al.  Chemiluminescence of luminol catalyzed by silver nanoparticles. , 2007, Journal of colloid and interface science.

[17]  H. Cui,et al.  Lucigenin Chemiluminescence Induced by Noble Metal Nanoparticles in the Presence of Adsorbates , 2007 .

[18]  P. S. Francis,et al.  Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence enhanced by silver nanoparticles. , 2007, Chemical communications.

[19]  G. Bazan,et al.  Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. , 2007, Journal of the American Chemical Society.

[20]  Jin-Ku Liu,et al.  Preparation of silver/hydroxyapatite nanocomposite spheres , 2008 .

[21]  Na Li,et al.  Gold Nanoparticle Triggered Chemiluminescence between Luminol and AgNO3 , 2008 .

[22]  S. Dubas,et al.  Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection , 2008 .

[23]  Wei Wang,et al.  Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide , 2008 .

[24]  Meilin Liu,et al.  Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. , 2008, The journal of physical chemistry. B.

[25]  Tamitake Itoh,et al.  Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications , 2008, Analytical and bioanalytical chemistry.

[26]  Gregory D. Scholes,et al.  Controlling the Optical Properties of Inorganic Nanoparticles , 2008 .

[27]  H. Cui,et al.  Time-tunable autocatalytic lucigenin chemiluminescence initiated by platinum nanoparticles and ethanol. , 2009, Chemical communications.

[28]  Baoxin Li,et al.  Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluminescence system. , 2009, Biosensors & bioelectronics.

[29]  Jin-Ming Lin,et al.  A review on applications of chemiluminescence detection in food analysis. , 2010, Analytica chimica acta.

[30]  Metallic nanoparticles bioassay for Enterobacter cloacae P99 beta-lactamase activity and inhibitor screening. , 2010, The Analyst.

[31]  Na Li,et al.  Luminol chemiluminescence induced by silver nanoparticles in the presence of nucleophiles and Cu2 , 2010 .

[32]  B. Haghighi,et al.  Flow injection chemiluminescence determination of isoniazid using luminol and silver nanoparticles , 2010 .

[33]  Yingshu Guo,et al.  Silver nanoparticle-based chemiluminescence enhancement for the determination of norfloxacin , 2010 .

[34]  M. Kappes,et al.  Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. , 2010, Nano letters.

[35]  Baoxin Li,et al.  A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system. , 2011, Chemistry.

[36]  Jianxiu Wang,et al.  Determination of bisphenol A in water via inhibition of silver nanoparticles-enhanced chemiluminescence. , 2011, Analytica chimica acta.

[37]  Baoxin Li,et al.  Silver nanoparticle-initiated chemiluminescence reaction of luminol–AgNO3 and its analytical application , 2011, Analytical and bioanalytical chemistry.

[38]  Determination of nitrofurans in feeds based on silver nanoparticle-catalyzed chemiluminescence , 2012 .

[39]  Baoxin Li,et al.  Enhanced effect of aggregated gold nanoparticles on luminol chemiluminescence system and its analytical application. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.