Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems

Hybrid quantum circuits combine two or more physical systems, with the goal of harnessing the advantages and strengths of the different systems in order to better explore new phenomena and potentially bring about novel quantum technologies. This article presents a brief overview of the progress achieved so far in the field of hybrid circuits involving atoms, spins and solid-state devices (including superconducting and nanomechanical systems). How these circuits combine elements from atomic physics, quantum optics, condensed matter physics, and nanoscience is discussed, and different possible approaches for integrating various systems into a single circuit are presented. In particular, hybrid quantum circuits can be fabricated on a chip, facilitating their future scalability, which is crucial for building future quantum technologies, including quantum detectors, simulators, and computers.

[1]  H. Fröhlich,et al.  Theory of the superconducting state. I. The ground state at the absolute zero of temperature , 1950 .

[2]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[3]  S. Nakajima,et al.  Perturbation theory in statistical mechanics , 1955 .

[4]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[5]  M. Roukes,et al.  Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals , 1996 .

[6]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[7]  Martin Evison Bit of both , 1997 .

[8]  Vladimir S. Ilchenko,et al.  CAVITY QED WITH HIGH-Q WHISPERING GALLERY MODES , 1998 .

[9]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[10]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[11]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[12]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[13]  David E. Pritchard,et al.  Atom cooling , trapping , and quantum manipulation , 1999 .

[14]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[15]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[16]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[17]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[18]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[19]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[20]  Hood,et al.  The atom-cavity microscope: single atoms bound in orbit by single photons , 2000, Science.

[21]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[22]  Gerard J. Milburn,et al.  Quantum electromechanical systems , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[23]  Jun Ye,et al.  Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity , 2001, quant-ph/0101103.

[24]  Wolfgang Harneit,et al.  Fullerene-based electron-spin quantum computer , 2002 .

[25]  M. Blencowe,et al.  Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. , 2002, Physical review letters.

[26]  Siyuan Han,et al.  Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction , 2002, Science.

[27]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[28]  Chui-Ping Yang,et al.  Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED , 2003, 1403.4037.

[29]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[30]  H. J. Kimble,et al.  Optimal sizes of dielectric microspheres for cavity QED with strong coupling , 2003 .

[31]  Vladimir S. Ilchenko,et al.  Whispering-gallery-mode electro-optic modulator and photonic microwave receiver , 2003 .

[32]  Franco Nori,et al.  Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits , 2003, cond-mat/0306363.

[33]  F. Nori,et al.  Quantum information processing with superconducting qubits in a microwave field , 2003, cond-mat/0306207.

[34]  M. Lukin Colloquium: Trapping and manipulating photon states in atomic ensembles , 2003 .

[35]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[36]  M. Lukin,et al.  Capacitive coupling of atomic systems to mesoscopic conductors. , 2003, Physical review letters.

[37]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[38]  Hideo Mabuchi,et al.  Feasibility of detecting single atoms using photonic bandgap cavities , 2004 .

[39]  A N Cleland,et al.  Superconducting qubit storage and entanglement with nanomechanical resonators. , 2004, Physical review letters.

[40]  P Zoller,et al.  Interfacing quantum-optical and solid-state qubits. , 2004, Physical review letters.

[41]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[42]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[43]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[44]  Chui-Ping Yang,et al.  Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. , 2004, Physical review letters.

[45]  David P. DiVincenzo,et al.  Multilevel quantum description of decoherence in superconducting qubits , 2004 .

[46]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[47]  S. M. Dutra,et al.  Cavity quantum electrodynamics : the strange theory of light in a box , 2004 .

[48]  M. D. Lukin,et al.  Mesoscopic cavity quantum electrodynamics with quantum dots , 2004 .

[49]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[50]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[51]  Decoherence of a Josephson qubit due to coupling to two-level systems , 2004, cond-mat/0409006.

[52]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[53]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[54]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[55]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[56]  A. Shnirman,et al.  Tunneling spectroscopy of two-level systems inside a Josephson junction. , 2005, Physical review letters.

[57]  C. P. Sun,et al.  Cooling mechanism for a nonmechanical resonator by periodic coupling to a Cooper pair box , 2004, quant-ph/0410149.

[58]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[59]  Pritiraj Mohanty,et al.  Evidence for quantized displacement in macroscopic nanomechanical oscillators. , 2005, Physical review letters.

[60]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[61]  P. Zoller,et al.  The cold atom Hubbard toolbox , 2004, cond-mat/0410614.

[62]  Eyal Buks,et al.  Decoherence and recoherence in a vibrating rf SQUID , 2006, quant-ph/0607106.

[63]  Alexei M. Tyryshkin,et al.  Stark tuning of donor electron spins in silicon. , 2006 .

[64]  Hybridized solid-state qubit in the charge-flux regime , 2004, cond-mat/0409010.

[65]  K. Vahala,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[66]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[67]  G. Burkard,et al.  Ultra-long distance interaction between spin qubits , 2006, cond-mat/0603119.

[68]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[69]  M. Steel,et al.  Diamond based photonic crystal microcavities. , 2006, Optics express.

[70]  Controllable Coupling between Flux Qubit and Nanomechanical Resonator , 2006, cond-mat/0607180.

[71]  J. Johansson,et al.  Vacuum Rabi oscillations in a macroscopic superconducting qubit oscillator system. , 2005, Physical review letters.

[72]  R J Schoelkopf,et al.  Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. , 2006, Physical review letters.

[73]  L. Childress,et al.  Supporting Online Material for , 2006 .

[74]  Franco Nori,et al.  Probing tiny motions of nanomechanical resonators: classical or quantum mechanical? , 2006, Physical review letters.

[75]  P. Monnier,et al.  Hyperfine interaction of Er3+ ions in Y2SiO5 : An electron paramagnetic resonance spectroscopy study , 2006 .

[76]  Andrew D. Greentree,et al.  Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms , 2006 .

[77]  Franco Nori,et al.  Quantum two-level systems in Josephson junctions as naturally formed qubits. , 2006, Physical review letters.

[78]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[79]  K. Berggren,et al.  Microwave-Induced Cooling of a Superconducting Qubit , 2006, Science.

[80]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[81]  C. P. Sun,et al.  Quantum transducers: Integrating transmission lines and nanomechanical resonators via charge qubits , 2005, quant-ph/0504056.

[82]  Fedor Jelezko,et al.  Processing quantum information in diamond , 2006 .

[83]  Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.

[84]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[85]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[86]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[87]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[88]  Michel Devoret,et al.  Circuit‐QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be? * , 2007, Annalen der Physik.

[89]  Xuedong Hu,et al.  Low-decoherence flux qubit , 2007 .

[90]  M. Lukin,et al.  Relaxation, dephasing, and quantum control of electron spins in double quantum dots , 2006, cond-mat/0602470.

[91]  A. Matsko,et al.  On fundamental quantum noises of whispering gallery mode electro-optic modulators. , 2007, Optics express.

[92]  Alfred Forchel,et al.  Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime , 2007 .

[93]  Franco Nori,et al.  Cooling a micromechanical beam by coupling it to a transmission line , 2007, 0706.3100.

[94]  S. Deleglise,et al.  Quantum jumps of light recording the birth and death of a photon in a cavity , 2006, Nature.

[95]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[96]  V. S. Shumeikoa Quantum bits with Josephson junctions , 2007 .

[97]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[98]  S. Reitzenstein,et al.  Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[99]  V. Shumeiko,et al.  Quantum bits with Josephson junctions (Review Article) , 2007 .

[100]  P. Zoller,et al.  Molecular Dipolar Crystals as High Fidelity Quantum Memory for Hybrid Quantum Computing , 2007, 0706.3051.

[101]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[102]  Franco Nori,et al.  Quantum information processing using frequency control of impurity spins in diamond , 2007 .

[103]  Wolfgang P. Schleich,et al.  Elements of Quantum Information , 2007 .

[104]  L. Tian,et al.  Josephson junction microscope for low-frequency fluctuators. , 2007, Physical review letters.

[105]  Franco Nori,et al.  Two-mode squeezed states and entangled states of two mechanical resonators , 2007 .

[106]  J. Morton,et al.  Environmental effects on electron spin relaxation in N @ C 60 , 2006, quant-ph/0611108.

[107]  Eugene E. Haller,et al.  Solid-state quantum memory using the 31P nuclear spin , 2008, Nature.

[108]  Franco Nori,et al.  Interqubit coupling mediated by a high-excitation-energy quantum object , 2007, 0709.0237.

[109]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[110]  Takao Aoki,et al.  A Photon Turnstile Dynamically Regulated by One Atom , 2008, Science.

[111]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[112]  Franco Nori,et al.  Controllable coherent population transfers in superconducting qubits for quantum computing , 2008, Physical review letters.

[113]  K. Mølmer,et al.  Quantum computing with a single molecular ensemble and a Cooper pair box , 2007, 0711.0606.

[114]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[115]  Klaus Mølmer,et al.  Holographic quantum computing. , 2008, Physical review letters.

[116]  H.-G. Meyer,et al.  Sisyphus cooling and amplification by a superconducting qubit , 2007, 0708.0665.

[117]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[118]  P Cappellaro,et al.  Coherence of an optically illuminated single nuclear spin qubit. , 2007, Physical review letters.

[119]  H. Yamaguchi,et al.  Cooling of a micro-mechanical resonator by the back-action of Lorentz force , 2007, 0704.2462.

[120]  Franco Nori,et al.  Quantum supercavity with atomic mirrors , 2008, 0809.4063.

[121]  Franco Nori,et al.  Lower limit on the achievable temperature in resonator-based sideband cooling , 2007, 0709.3775.

[122]  D. D. Awschalom,et al.  Supporting Online Material for Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath , 2008 .

[123]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[124]  D. Loss,et al.  Spin dynamics in InAs nanowire quantum dots coupled to a transmission line , 2007, 0708.2091.

[125]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[126]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[127]  M. Neeley Process Tomography of Quantum Memory in a Josephson Phase Qubit , 2008 .

[128]  F. Nori,et al.  Simultaneous cooling of an artificial atom and its neighboring quantum system. , 2007, Physical review letters.

[129]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[130]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[131]  Hiroshi Yamaguchi,et al.  Motion detection of a micromechanical resonator embedded in a d.c. SQUID , 2008 .

[132]  Franco Nori,et al.  Controllable scattering of a single photon inside a one-dimensional resonator waveguide. , 2008, Physical review letters.

[133]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[134]  P. Bertet,et al.  Tunable Resonators for Quantum Circuits , 2007, 0712.0221.

[135]  I. Bloch Quantum coherence and entanglement with ultracold atoms in optical lattices , 2008, Nature.

[136]  R J Schoelkopf,et al.  Quantum computing with an electron spin ensemble. , 2009, Physical review letters.

[137]  P. Zoller,et al.  Hybrid quantum devices and quantum engineering , 2009, 0911.3835.

[138]  Molecular ensemble-based remote quantum storage for charge qubit via a quasidark state , 2009, 0904.2420.

[139]  R J Schoelkopf,et al.  Circuit QED and engineering charge-based superconducting qubits , 2009, 0912.3902.

[140]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[141]  J. Evers,et al.  Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference. , 2009, Physical review letters.

[142]  D. D. Awschalom,et al.  Gigahertz Dynamics of a Strongly Driven Single Quantum Spin , 2009, Science.

[143]  P. M. Echternach,et al.  Nanomechanical measurements of a superconducting qubit , 2009, Nature.

[144]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[145]  G. Kurizki,et al.  Reversible state transfer between superconducting qubits and atomic ensembles , 2009, 0902.0881.

[146]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[147]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[148]  C. Su,et al.  High-performance diamond-based single-photon sources for quantum communication , 2009, 0904.2267.

[149]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[150]  Franco Nori,et al.  Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control , 2009, 0902.2526.

[151]  J. Schmiedmayer,et al.  Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. , 2008, Physical review letters.

[152]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[153]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[154]  Y. Blanter,et al.  Dynamics of a SQUID ratchet coupled to a nanomechanical resonator , 2009 .

[155]  A. Matsko,et al.  Microwave whispering gallery resonator for efficient optical up-conversion , 2009, 0905.2961.

[156]  L. Fu,et al.  Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator , 2009 .

[157]  F. Nori,et al.  Landau-Zener-Stückelberg interferometry , 2009, 0911.1917.

[158]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[159]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[160]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[161]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[162]  D. Awschalom,et al.  Excited-state spin coherence of a single nitrogen–vacancy centre in diamond , 2010 .

[163]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010 .

[164]  M. Tsang Cavity quantum electro-optics , 2010, 1003.0116.

[165]  Entanglement generation of nitrogen-vacancy centers via coupling to nanometer-sized resonators and a superconducting interference device , 2010 .

[166]  Quantum computing: Quantum RAM , 2010, Nature.

[167]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[168]  Storage of arbitrary two-charge-qubit states in a single Rb-87 cold-atom ensemble , 2010 .

[169]  Robert J Schoelkopf,et al.  Storage of multiple coherent microwave excitations in an electron spin ensemble. , 2009, Physical review letters.

[170]  E Solano,et al.  Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. , 2010, Physical review letters.

[171]  J J García-Ripoll,et al.  Switchable ultrastrong coupling in circuit QED. , 2009, Physical review letters.

[172]  Mary Beth Rothwell,et al.  High-coherence hybrid superconducting qubit. , 2010, Physical review letters.

[173]  S. Barrett,et al.  Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond , 2009, 0912.3586.

[174]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[175]  J. Cole,et al.  Measuring the temperature dependence of individual two-level systems by direct coherent control. , 2010, Physical review letters.

[176]  Lee C. Bassett,et al.  Spin-Light Coherence for Single-Spin Measurement and Control in Diamond , 2010, Science.

[177]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[178]  C. P. Sun,et al.  Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators , 2009, 0910.3066.

[179]  Franco Nori,et al.  Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities , 2009, 0909.2748.

[180]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[181]  D. J. Twitchen,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010 .

[182]  Siyuan Han,et al.  Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system , 2010, Nature communications.

[183]  Atoms Talking with SQUIDs , 2010, 1108.4153.

[184]  T. Duty Towards superconductor-spin ensemble hybrid quantum systems , 2010 .

[185]  F. Nori,et al.  Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states , 2009, 0912.4888.

[186]  Y. Ota,et al.  Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system , 2009, 0905.3063.

[187]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[188]  T. Kontos,et al.  Spin quantum bit with ferromagnetic contacts for circuit QED. , 2010, Physical review letters.

[189]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[190]  Fedor Jelezko,et al.  Dynamical Decoupling of a single electron spin at room temperature , 2010, 1008.1953.

[191]  Qiong Chen,et al.  Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators , 2011 .

[192]  Jiangfeng Du,et al.  Observation of an anomalous decoherence effect in a quantum bath at room temperature , 2011, Nature communications.

[193]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[194]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[195]  Zhang-qi Yin,et al.  High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation , 2011 .

[196]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[197]  Parsa Bonderson,et al.  Topological quantum buses: coherent quantum information transfer between topological and conventional qubits. , 2011, Physical review letters.

[198]  Martin Leijnse,et al.  Quantum information transfer between topological and spin qubit systems. , 2011, Physical review letters.

[199]  Michael Jetter,et al.  Lasing properties of InP/(Ga 0.51 In 0.49 )P quantum dots in microdisk cavities , 2011 .

[200]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[201]  S. Vishveshwara Topological qubits: A bit of both , 2011 .

[202]  Coupling Rydberg atoms to superconducting qubits via nanomechanical resonator , 2011 .

[203]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[204]  John Preskill,et al.  Interface between topological and superconducting qubits. , 2010, Physical review letters.

[205]  Richard M. Brown,et al.  Entanglement in a solid-state spin ensemble , 2010, Nature.

[206]  Zhang-qi Yin,et al.  Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit , 2011 .

[207]  J. Teufel,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2010, Nature.

[208]  F. Jelezko,et al.  Theory of the ground state spin of the NV- center in diamond: I. Fine structure, hyperfine structure, and interactions with electric, magnetic and strain fields , 2011 .

[209]  Amir Yacoby,et al.  Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs , 2011 .

[210]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[211]  Y. Blanter,et al.  Detecting phonon blockade with photons , 2010, 1007.4714.

[212]  S Onoda,et al.  Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. , 2011, Physical review letters.

[213]  Cambridge,et al.  Laser cooling and optical detection of excitations in a LC electrical circuit. , 2011, Physical review letters.

[214]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[215]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[216]  L. Hollenberg,et al.  Theory of the ground state spin of the NV- center in diamond: II. Spin solutions, time-evolution, relaxation and inhomogeneous dephasing , 2011, 1111.5882.

[217]  Mankei Tsang,et al.  Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields , 2011, 1105.2336.

[218]  J. Cole,et al.  Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator , 2011 .

[219]  M R Delbecq,et al.  Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip. , 2011, Physical review letters.

[220]  Lan Yang,et al.  Estimation of Purcell factor from mode-splitting spectra in an optical microcavity , 2011, 1103.2346.

[221]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[222]  M. Brandt,et al.  Elastically driven ferromagnetic resonance in nickel thin films. , 2010, Physical review letters.

[223]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[224]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[225]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[226]  Michael Marthaler,et al.  Strong coupling of spin qubits to a transmission line resonator. , 2011, Physical review letters.

[227]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[228]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[229]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[230]  Ying-Dan Wang,et al.  Using interference for high fidelity quantum state transfer in optomechanics. , 2011, Physical review letters.

[231]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[232]  H. Ritsch,et al.  Strong magnetic coupling of an inhomogeneous nitrogen-vacancy ensemble to a cavity , 2011, 1112.4767.

[233]  Lin Tian,et al.  Adiabatic state conversion and pulse transmission in optomechanical systems. , 2011, Physical review letters.

[234]  Circuit QED using a semiconductor double quantum dot , 2012, 1206.0674.

[235]  Franco Nori,et al.  Quantum technologies: an old new story , 2012 .

[236]  A. Auffeves,et al.  Storage and retrieval of a microwave field in a spin ensemble , 2011, 1109.3960.

[237]  F. Nori,et al.  Strong coupling of a spin qubit to a superconducting stripline cavity , 2012, 1204.4732.

[238]  Xiaobo Zhu,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2012 .

[239]  Martin Leijnse,et al.  Hybrid topological-spin qubit systems for two-qubit-spin gates , 2012, 1206.2455.

[240]  John M. Martinis,et al.  Resonator-zero-qubit architecture for superconducting qubits , 2011, 1105.3997.

[241]  M. Markham,et al.  Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[242]  P. Hānggi,et al.  Nonequilibrium phases in hybrid arrays with flux qubits and nitrogen-vacancy centers , 2012, 1203.1857.

[243]  Simon C. Benjamin,et al.  Measurement-based quantum computing with a spin ensemble coupled to a stripline cavity , 2012 .

[244]  F. Nori,et al.  Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits , 2011, 1103.0835.

[245]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[246]  Inverse Landau-Zener-Stückelberg problem for qubit-resonator systems , 2011, 1110.3588.

[247]  Hannes Bernien,et al.  Two-photon quantum interference from separate nitrogen vacancy centers in diamond. , 2011, Physical review letters.

[248]  Solid state quantum memory , 2013 .

[249]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[250]  L. DiCarlo,et al.  Probing dynamics of an electron-spin ensemble via a superconducting resonator. , 2012, Physical review letters.

[251]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[252]  P. Hakonen,et al.  Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator , 2012, Nature.

[253]  T. Nakajima,et al.  Vacuum Rabi splitting in a semiconductor circuit QED system. , 2013, Physical review letters.

[254]  Thomas L. Reinecke,et al.  Quantum control of a spin qubit coupled to a photonic crystal cavity , 2013 .

[255]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[256]  F. Hocke,et al.  High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. , 2012, Physical review letters.

[257]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2013 .