Vapor pressure and specific electrical conductivity in the H2O–LiH2PO4–LiPO3 system—a novel electrolyte for water electrolysis at elevated temperature

[1]  N. Bjerrum,et al.  Efficient water splitting electrolysis on a platinum-free tungsten carbide electrocatalyst in molten CsH2PO4 at 350–390 °C , 2020 .

[2]  N. Bjerrum,et al.  CsH2PO4 as Electrolyte for the Formation of CH4 by Electrochemical Reduction of CO2 , 2020, Journal of The Electrochemical Society.

[3]  N. Bjerrum,et al.  CsH2PO4 is not stable at 260 °C unless confined. Comments to article by C.E. Botez, I. Martinez, A. Price, H. Martinez, and J.H. Leal in J. Phys. Chem. Solids 129 (2019) 324-328 , 2020 .

[4]  M. Fontana,et al.  Phase transformations in LiH 2 PO 4 (LDP) revealed by Raman spectroscopy , 2018, Solid State Communications.

[5]  N. Bjerrum,et al.  Vapor pressure and specific electrical conductivity in the solid and molten H2O-CsH2PO4-CsPO3 system—a novel electrolyte for water electrolysis at ~ 225–400 °C , 2018, Ionics.

[6]  I. I. Matrosov,et al.  Raman Spectra of Nitrogen, Carbon Dioxide, and Hydrogen in a Methane Environment , 2018 .

[7]  Chun-Ping Hou Magnetic Activation of a LiFePO4@C Composite Cathode Material , 2017 .

[8]  K. Zaghib,et al.  Chemically fabricated LiFePO4 thin film electrode for transparent batteries and electrochromic devices , 2016 .

[9]  N. Bjerrum,et al.  Water vapor pressure over molten KH2PO4 and demonstration of water electrolysis at ∼300°C , 2016 .

[10]  A. Bulou,et al.  Structural and vibrational study a new potassium lithium dihydrogenphosphate KLi(H 2 PO 4 ) 2 , 2016 .

[11]  N. Bjerrum,et al.  Specific electrical conductivity in molten potassium dihydrogen phosphate KH2PO4 - An electrolyte for water electrolysis at ∼300°C , 2016 .

[12]  Qingfeng Li,et al.  Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid , 2016, Applied spectroscopy.

[13]  A. Matvienko,et al.  Structure and thermal decomposition of Cs2HPO4 · 2H2O , 2016, Russian Journal of Inorganic Chemistry.

[14]  A. Bulou,et al.  Structural and vibrational study a new potassium lithium ă dihydrogenphosphate KLi(H2PO4)(2) , 2016 .

[15]  F. Graf,et al.  Renewable Power-to-Gas: A technological and economic review , 2016 .

[16]  A. Bulou,et al.  Crystal structure and spectroscopic studies of LiNH4(H2PO4)2 – A new solid acid in the LiH2PO4–NH4H2PO4 system , 2015 .

[17]  Mogens Bjerg Mogensen,et al.  High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. , 2014, Chemical reviews.

[18]  Xing Ou,et al.  Electrochemical properties of Li2FeP2O7 cathode material synthesized by using different lithium sources , 2014 .

[19]  J. J. Kweon,et al.  High Field MAS NMR and Conductivity Study of the Superionic Conductor LiH2PO4: Critical Role of Physisorbed Water in Its Protonic Conductivity , 2014 .

[20]  K. Du,et al.  A Facile Route for Synthesis of LiFePO4/C Cathode Material with Nano-sized Primary Particles , 2014 .

[21]  T. Zawodzinski,et al.  Nickel catalysts for hydrogen evolution from CsH2PO4 , 2014 .

[22]  A. Urtiaga Cesium dihydrogen phosphate as electrolyte for intermediate temperature proton exchange membrane water electrolysis (IT-PEMWE) , 2014 .

[23]  Joshua R. Smith,et al.  Para-H2 to ortho-H2 conversion in a full-scale automotive cryogenic pressurized hydrogen storage up to 345 bar , 2013 .

[24]  Fenghua Zheng,et al.  Tween40 surfactant effect on the formation of nano-sized LiFePO4/C powder via a solid state reaction and their cathode properties , 2013 .

[25]  J. J. Kweon,et al.  Rotating-frame nuclear magnetic resonance study of the superprotonic conduction in LiH2PO4 , 2013 .

[26]  K. Tang,et al.  LiFePO4/C Cathode Materials Prepared by One-Step Fast Carbothermal Method Using Fe2O3 as Raw Materials , 2013 .

[27]  V. Puzikov,et al.  Growth of LiH2PO4 single crystals from phosphate solutions , 2013 .

[28]  M. Toumi,et al.  Thermal analysis, Raman spectroscopy and complex impedance analysis of Cu2+-doped KDP , 2013, Ionics.

[29]  R. W. Berg,et al.  Nonlinearity in Intensity versus Concentration Dependence for the Deep UV Resonance Raman Spectra of Toluene and Heptane , 2013 .

[30]  A. Katrusiak,et al.  Structure of the high-pressure phase IV of KH2PO4 (KDP). , 2013, Dalton transactions.

[31]  J. J. Kweon,et al.  Crystal growth and morphology of LiH2PO4 , 2012 .

[32]  R. W. Berg,et al.  Determining the Spectral Resolution of a Charge-Coupled Device (CCD) Raman Instrument , 2012 .

[33]  J. J. Kweon,et al.  Impedance spectroscopy of the superprotonic conduction in LiH2PO4 , 2012 .

[34]  Keith Scott,et al.  Solid Acids as Electrolyte Materials for Proton Exchange Membrane (PEM) Electrolysis: Review , 2012 .

[35]  R. Vargas,et al.  Electrical conductivity relaxation in PVOH+LiH2PO4+Al2O3 polymer composites , 2012, Ionics.

[36]  J. J. Kweon,et al.  Nuclear magnetic resonance study of the superprotonic conduction in LiH2PO4 , 2011 .

[37]  R. Chianelli,et al.  Intermediate-temperature Polymorphic Phase Transition in KH2PO4: A Synchrotron X-ray Diffraction Study , 2010 .

[38]  Cheol-Eui Lee,et al.  Crystal Structure of LiH2PO4 Studied by Single-Crystal Neutron Diffraction , 2010 .

[39]  Ø. Ulleberg,et al.  The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools , 2010 .

[40]  Joong-Seok Cho,et al.  LiH 2 PO 4 Crystal as a Solid Electrolyte , 2009 .

[41]  A. I. Baranov,et al.  Kinetics of the thermal decomposition in CsH2PO4 superprotonic crystal , 2009 .

[42]  J. Otomo,et al.  Phase transition and proton transport characteristics in CsH2PO4/SiO2 composites , 2008 .

[43]  Joonhee Moon,et al.  High-temperature phase transformations in LiH2PO4 and possible solid-state polymerization , 2008 .

[44]  Joonhee Moon,et al.  Raman spectroscopic study of LiH2PO4 , 2008 .

[45]  Y. Awakura,et al.  Dehydration of CsH2PO4 at temperatures higher than 260 °C and the ionic conductivity of liquid product , 2008 .

[46]  B. Mellander,et al.  More studies on the PVOH-LiH2PO4 polymer system , 2007 .

[47]  S. Haile,et al.  Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C , 2007 .

[48]  A. Zaopo,et al.  Influence of humidity and thermal decomposition on the protonic conductivity of single and polycrystalline CsH2PO4 , 2007 .

[49]  Berg,et al.  Raman spectroscopy evidence of 1:1:1 complex formation during dissolution of WO3 in a melt of K2S2O7:K2SO4 , 2006 .

[50]  Michael D. Feit,et al.  Complex morphology of laser-induced bulk damage in K2H(2−x)DxPO4 crystals , 2006 .

[51]  R. W. Berg,et al.  Wavenumber Calibration of CCD Detector Raman Spectrometers Controlled by a Sinus Arm Drive , 2006 .

[52]  A. Voloshin,et al.  Me2O-P2O5-H2O solubility phase diagrams and growth of MeH2PO4 single crystals (Me = Li, Na, K, Rb, Cs, NH4) , 2004 .

[53]  Jong-Ho Park Possible origin of the proton conduction mechanism of CsH 2 PO 4 crystals at high temperatures , 2004 .

[54]  S. Haile,et al.  High-Performance Solid Acid Fuel Cells Through Humidity Stabilization , 2004, Science.

[55]  S. Haile,et al.  High-Temperature Behavior of CsH2PO4 under Both Ambient and High Pressure Conditions , 2003 .

[56]  I. R. Lewis,et al.  Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line , 2001 .

[57]  J. Jaud,et al.  The influence of partial substitution of phosphorus by arsenic in monoclinic CsH2PO4. X-ray single crystal, vibrational and phase transitions in the mixed CsH2(PO4)0.72(AsO4)0.28 , 2001 .

[58]  W. Bronowska Comment on “Does the structural superionic phase transition at 231 °C in CsH2PO4 really not exist?” [J. Chem. Phys. 110, 4847 (1999)] , 2001 .

[59]  T. Mhiri,et al.  Crystal structure, characterisation and vibrational study of a mixed compound Cs0.4Rb0.6H2Po4 , 2000 .

[60]  B. Mellander,et al.  On the high-temperature phase transitions of some KDP-family compounds: a structural phase transition? A transition to a bulk-high proton conducting phase? , 1999 .

[61]  Maté,et al.  Ro-vibrational Raman Cross Sections of Water Vapor in the OH Stretching Region. , 1999, Journal of molecular spectroscopy.

[62]  B. Mellander,et al.  On the high-temperature phase transitions of CsH2PO4: A polymorphic transition? A transition to a superprotonic conducting phase? , 1999 .

[63]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[64]  I. Smolsky,et al.  Growth of lithium dihydrogen phosphate ( LiH 2 PO 4 ) single crystals based on analysis of dissolution diagram for the Li 2 O-P 2 O 5 -H 2 O system , 1997 .

[65]  Kwang-Sei Lee,et al.  Hidden nature of the high-temperature phase transitions in crystals of KH2PO4-TYPE : Is it a physical change ? , 1996 .

[66]  F. Romain,et al.  Raman study of the high-temperature phase transition in CsH2PO4 , 1991 .

[67]  Y. Garrabos,et al.  Comparison between the density effects on the levels of the Raman spectra of the Fermi resonance doublet of the 12C16O2 and 13C16O2 molecules , 1989 .

[68]  A. I. Baranov,et al.  Fast proton transport in crystals with a dynamically disordered hydrogen bond network , 1989 .

[69]  Jong–Jean Kim,et al.  Raman spectra of the NaH2PO4 crystal , 1989 .

[70]  A. Weber,et al.  FTS-Raman flame spectroscopy of high-J lines in H2 and D2 , 1987 .

[71]  H. Edwards,et al.  Pure rotational and vibration–rotational Raman spectra of 1H2, 1H2H and 2H2 , 1986 .

[72]  N. Bjerrum,et al.  Specific conductivity of sodium chloride-aluminum chloride and sodium chloride-aluminum chloride-aluminum sulfide (NaCl-AlCl3-Al2S3) melts , 1985 .

[73]  D. Minic,et al.  Electric and electrochemical properties of solid LiH2PO4 , 1981 .

[74]  N. Bjerrum,et al.  NEGATIVE OXIDATION STATES OF THE CHALCOGENS IN MOLTEN SALTS. 1. RAMAN SPECTROSCOPIC STUDIES ON ALUMINUM CHLOROSULFIDES FORMED IN CHLORIDE AND CHLOROALUMINATE MELTS AND SOME RELATED SOLID AND DISSOLVED COMPOUNDS , 1980 .

[75]  B. Wunderlich,et al.  Melting and crystallization of a polyphosphate , 1979 .

[76]  B. Wunderlich,et al.  On the existence of low- and high-temperature crystal forms of lithium polyphosphate , 1979 .

[77]  H. W. Schrötter,et al.  Raman Scattering Cross Sections in Gases and Liquids , 1979 .

[78]  B. Wunderlich,et al.  Crystallization during polymerization of Lithium Dihydrogen Phosphate. I. Nucleation of the Macromolecular Crystal from the Oligomer Melt , 1978 .

[79]  W. Murphy,et al.  The rovibrational Raman spectrum of water vapour v 1 and v 3 , 1978 .

[80]  B. Wunderlich,et al.  Crystallization during Polymerization of Lithium Dihydrogen Phosphate. II. Crystal growth by dimer addition , 1978 .

[81]  M. Catti,et al.  Crystal structure of LiH2PO4, structural topology and hydrogen bonding in the alkaline dihydrogen orthophosphates , 1977 .

[82]  Robert Gaufrès,et al.  Raman band contours for water vapor as a function of temperature , 1976 .

[83]  E. Thilo,et al.  Zur Chemie der kondensierten Phosphate und Arsenate. XIII. Der Entwässerungsverlauf der Dihydrogenmonophosphate des Liċ, Naċ, Kċ und NH 4ċ , 1955 .

[84]  M. Markowitz,et al.  Polymerization and Depolymerization Phenomena in Phosphate–Metaphosphate Systems at Higher Temperatures. IV. Condensation Reactions of Alkali Metal Hydrogen Phosphates , 1955 .

[85]  L. Audrieth,et al.  Polymerization and Depolymerization Phenomena in Phosphate–Metaphosphate Systems at Higher Temperatures. Condensation Reactions Involving the Potassium Hydrogen Orthophosphates , 1952 .

[86]  Grinnell. Jones,et al.  The Measurement of the Conductance of Electrolytes. V. A Redetermination of the Conductance of Standard Potassium Chloride Solutions in Absolute Units , 1933 .