Chirality and domain growth in the gyroid mesophase

We describe the first dynamical simulations of domain growth during the self-assembly of the gyroid mesophase from a ternary amphiphilic mixture, using the lattice Boltzmann method. The gyroid is a chiral structure; we demonstrate that, for a symmetric amphiphile with no innate preference for left- or right-handed morphologies, the self-assembly process may give rise to a racemic mixture of domains. We use measurements of the averaged mean curvature to analyse the behaviour of domain walls, and suggest that diffusive domain growth may be present in this system.

[1]  L. Scriven,et al.  The Marangoni Effects , 1960, Nature.

[2]  Richard Phillips Feynman,et al.  Feynman lectures on physics - Volume 1 , 1963 .

[3]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[4]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[5]  H. Nissen Crystal Orientation and Plate Structure in Echinoid Skeletal Units , 1969, Science.

[6]  David L. Pawson,et al.  X-ray Diffraction Studies of Echinoderm Plates , 1969, Science.

[7]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[8]  A. Schoen Infinite periodic minimal surfaces without self-intersections , 1970 .

[9]  L. Scriven,et al.  Equilibrium bicontinuous structure , 1976, Nature.

[10]  A. Stier,et al.  Non‐lamellar structure in rabbit liver microsomal membranes , 1978, FEBS letters.

[11]  J. Patton,et al.  Watching fat digestion. , 1979, Science.

[12]  R. Rand Interacting phospholipid bilayers: measured forces and induced structural changes. , 1981, Annual review of biophysics and bioengineering.

[13]  A. Mackay Periodic minimal surfaces , 1985, Nature.

[14]  J S Patton,et al.  Visualization by freeze fracture, in vitro and in vivo, of the products of fat digestion. , 1986, Journal of lipid research.

[15]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[16]  and J H Prestegard,et al.  Membrane and Vesicle Fusion , 1987 .

[17]  W. Lorensen,et al.  Two algorithms for the three-dimensional reconstruction of tomograms. , 1988, Medical physics.

[18]  C A Mistretta,et al.  Scatter-glare corrections in quantitative dual-energy fluoroscopy. , 1988, Medical physics.

[19]  David M. Anderson,et al.  Periodic area-minimizing surfaces in block copolymers , 1988, Nature.

[20]  S. Hyde Microstructure of bicontinuous surfactant aggregates , 1989 .

[21]  M. Nakahara Geometry, Topology and Physics , 2018 .

[22]  Schick,et al.  Correlation between structural and interfacial properties of amphiphilic systems. , 1990, Physical review letters.

[23]  Toxvaerd,et al.  Computer simulation of phase separation in a two-dimensional binary fluid mixture. , 1993, Physical review letters.

[24]  Topological defects in lamellar phases: passages, and their fluctuations , 1993 .

[25]  Guido Gerig,et al.  Symbolic Description of 3-D Structures Applied to Cerebral Vessel Tree Obtained from MR Angiography Volume Data , 1993, IPMI.

[26]  John M. Seddon,et al.  Cubic phases of self-assembled amphiphilic aggregates , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[27]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[28]  Edwin L. Thomas,et al.  The gyroid: A new equilibrium morphology in weakly segregated diblock copolymers , 1994 .

[29]  R. Templer,et al.  Chapter 3 - Polymorphism of Lipid-Water Systems , 1995 .

[30]  M. Cieplak,et al.  Boltzmann cellular automata studies of the spinodal decomposition , 1995 .

[31]  Gerhard Gompper,et al.  Self-assembling amphiphilic systems , 1995 .

[32]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[33]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[34]  T Landh,et al.  From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers , 1995, FEBS letters.

[35]  A. Lamura,et al.  A lattice Boltzmann model of ternary fluid mixtures , 1995 .

[36]  Effects of hydrostatic pressure on the monoolein-water system: An estimate of the energy function of the inverted Ia3d cubic phase. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  Peter V. Coveney,et al.  A lattice-gas model of microemulsions , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[39]  Jacek Klinowski,et al.  Curved surfaces in chemical structure , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  D. Gaver,et al.  A Synopsis of Surfactant Spreading Research , 1996 .

[41]  Holyst,et al.  High genus periodic gyroid surfaces of nonpositive Gaussian curvature. , 1996, Physical review letters.

[42]  Konrad Polthier,et al.  Construction of triply periodic minimal surfaces , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  Arie E. Kaufman,et al.  Tetra-Cubes: An algorithm to generate 3D isosurfaces based upon tetrahedra , 1996 .

[44]  Karsten Große-Brauckmann,et al.  Gyroids of Constant Mean Curvature , 1997, Exp. Math..

[45]  E. Thomas,et al.  Tricontinuous Double Gyroid Cubic Phase in Triblock Copolymers of the ABA Type , 1997 .

[46]  David A. Agard,et al.  Microstructural Analysis of a Cubic Bicontinuous Morphology in a Neat SIS Triblock Copolymer , 1997 .

[47]  R. Hołyst,et al.  Confined complex liquids: Passages, droplets, permanent deformations, and order–disorder transitions , 1998 .

[48]  Alexander J. Wagner,et al.  Breakdown of Scale Invariance in the Coarsening of Phase-Separating Binary Fluids , 1998 .

[49]  S. Sakurai,et al.  Thermally induced morphological transition from lamella to gyroid in a binary blend of diblock copolymers , 1998 .

[50]  Timothy J. Madden,et al.  Dynamic simulation of diblock copolymer microphase separation , 1998 .

[51]  G. Gompper,et al.  Lattice-Boltzmann model of amphiphilic systems , 1998 .

[52]  Andrew H. Gee,et al.  Regularised marching tetrahedra: improved iso-surface extraction , 1999, Comput. Graph..

[53]  E. Thomas,et al.  Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors , 1999, Science.

[54]  Jacek Klinowski,et al.  / Exact computation of the triply periodic D 'diamond' minimal surface , 1999 .

[55]  D. Langevin Surfactant Systems , 1999 .

[56]  M. E. Cates,et al.  3D spinodal decomposition in the inertial regime , 1999, cond-mat/9902346.

[57]  Edward L Cussler,et al.  Core-shell gyroid morphology in a poly(isoprene-block-styrene-block- dimethylsiloxane) triblock copolymer , 1999 .

[58]  Stephen T. Hyde,et al.  Continuous transformations of cubic minimal surfaces , 1999 .

[59]  G Gompper,et al.  Systematic approach to bicontinuous cubic phases in ternary amphiphilic systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  Stephen T. Hyde,et al.  Polycontinuous morphologies and interwoven helical networks , 2000 .

[61]  Peter V. Coveney,et al.  A ternary lattice Boltzmann model for amphiphilic fluids , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[62]  Schwarz,et al.  Stability of inverse bicontinuous cubic phases in lipid-water mixtures , 2000, Physical review letters.

[63]  M Nekovee,et al.  Lattice-Boltzmann simulations of self-assembly of a binary water-surfactant system into ordered bicontinuous cubic and lamellar phases. , 2001, Journal of the American Chemical Society.

[64]  P V Coveney,et al.  Three-dimensional hydrodynamic lattice-gas simulations of domain growth and self-assembly in binary immiscible and ternary amphiphilic fluids. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  V. Boltyanskii,et al.  Topology of Surfaces , 2001 .

[66]  P. B. Warren,et al.  Mesoscale simulations of surfactant dissolution and mesophase formation. , 2002, Physical review letters.

[67]  A. Blumberg BASIC TOPOLOGY , 2002 .

[68]  Forschungszentrum Juelich,et al.  Bicontinuous Surfaces in Self-assembling Amphiphilic Systems , 2002 .

[69]  Augustine Urbas,et al.  Bicontinuous Cubic Block Copolymer Photonic Crystals , 2002 .

[70]  Howard G. Hatch,et al.  INFINITE PERIODIC MINIMAL SURFACES WITHOUT SELF-INTERSECTIONS , 2002 .

[71]  Roland Winter,et al.  Structure of water confined in the gyroid cubic phase of the lipid monoelaidin , 2002 .

[72]  Peter V Coveney,et al.  Lattice Boltzmann study of spinodal decomposition in two dimensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  S. Hyde,et al.  Novel surfactant mesostructural topologies: between lamellae and columnar (hexagonal) forms , 2003 .

[74]  Peter V Coveney,et al.  Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Alan L. Mackay,et al.  Periodic minimal surfaces of cubic symmetry , 2003 .

[76]  Thomas Lewiner,et al.  Efficient Implementation of Marching Cubes' Cases with Topological Guarantees , 2003, J. Graphics, GPU, & Game Tools.

[77]  Peter V Coveney,et al.  Developmental and physiological circuits: dissecting complexity. A report on a talk given by Dr Leroy Hood , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[78]  Peter V. Coveney,et al.  Self-organization: the quest for the origin and evolution of structure. Proceedings of the 2002 Nobel Symposium on self-organization , 2003 .

[79]  M. Tate,et al.  Modeling liquid crystal bilayer structures with minimal surfaces. , 2004, The Journal of chemical physics.

[80]  Peter V Coveney,et al.  Coarsening dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid and sponge mesophases: Lattice-Boltzmann simulations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Robert Haines,et al.  The teragyroid experiment , 2004 .

[82]  S. Hyde,et al.  A rhombohedral family of minimal surfaces as a pathway between the P and D cubic mesophases , 2004 .

[83]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[84]  Peter V. Coveney,et al.  Self-assembly of the gyroid cubic mesophase: Lattice-Boltzmann simulations , 2003, cond-mat/0310390.

[85]  Peter V. Coveney,et al.  The TeraGyroid experiment - Supercomputing 2003 , 2005, Sci. Program..

[86]  Peter V Coveney,et al.  Modelling biological complexity: a physical scientist's perspective , 2005, Journal of The Royal Society Interface.