Single-cell adaptations shape evolutionary transitions to multicellularity in green algae

[1]  L. F. Ríos Pinto,et al.  Potential applications of Botryococcus terribilis: A review , 2022, Biomass and Bioenergy.

[2]  P. Crozet,et al.  How abiotic stress-induced socialization leads to the formation of massive aggregates in Chlamydomonas. , 2022, Plant physiology.

[3]  W. Ratcliff,et al.  The Evolution of Multicellularity , 2022 .

[4]  G. Wagner,et al.  Co‐option of stress mechanisms in the origin of evolutionary novelties , 2021, Evolution; international journal of organic evolution.

[5]  W. Ratcliff,et al.  Selective drivers of simple multicellularity. , 2021, Current opinion in microbiology.

[6]  Joerg M. Buescher,et al.  Sulfur sequestration promotes multicellularity during nutrient limitation , 2021, Nature.

[7]  E. Selander,et al.  Predator-induced defence in a dinoflagellate generates benefits without direct costs , 2021, The ISME Journal.

[8]  M. Koehl Selective factors in the evolution of multicellularity in choanoflagellates. , 2020, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution.

[9]  A. Danon,et al.  When Unity Is Strength: The Strategies Used by Chlamydomonas to Survive Environmental Stresses , 2019, Cells.

[10]  Leonardo Bich,et al.  Understanding Multicellularity: The Functional Organization of the Intercellular Space , 2019, Front. Physiol..

[11]  G. Wagner,et al.  Stress‐Induced Evolutionary Innovation: A Mechanism for the Origin of Cell Types , 2018, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  S. West,et al.  The costs and benefits of multicellular group formation in algae * , 2019, Evolution; international journal of organic evolution.

[13]  Y. Kawabe,et al.  Evolution of multicellularity in Dictyostelia , 2019, The International journal of developmental biology.

[14]  A. Grossman,et al.  From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature , 2018, eLife.

[15]  Lili Xu,et al.  Enhanced Lipid Production in Chlamydomonas reinhardtii by Co-culturing With Azotobacter chroococcum , 2018, Front. Plant Sci..

[16]  W. Ratcliff,et al.  De novo origins of multicellularity in response to predation , 2018, Scientific Reports.

[17]  Erik F. Y. Hom,et al.  OK, thanks! A new mutualism between Chlamydomonas and methylobacteria facilitates growth on amino acids and peptides , 2018, FEMS microbiology letters.

[18]  Jennifer T. Pentz,et al.  Ecological Advantages and Evolutionary Limitations of Aggregative Multicellular Development , 2018, Current Biology.

[19]  W. van der Bijl phylopath: Easy phylogenetic path analysis in R , 2017, bioRxiv.

[20]  N. King,et al.  The Origin of Animal Multicellularity and Cell Differentiation. , 2017, Developmental cell.

[21]  Corina E Tarnita,et al.  On the origin of biological construction, with a focus on multicellularity , 2017, Proceedings of the National Academy of Sciences.

[22]  Shinichi Nakagawa,et al.  General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models , 2016, Genetics.

[23]  D. Pfennig,et al.  Evaluating 'Plasticity-First' Evolution in Nature: Key Criteria and Empirical Approaches. , 2016, Trends in ecology & evolution.

[24]  Erik R. Hanschen,et al.  The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity , 2016, Nature Communications.

[25]  G. Bertoni Genomic Diversity in Chlamydomonas Laboratory and Field Strains , 2015, Plant Cell.

[26]  S. Collins,et al.  Growth responses of a green alga to multiple environmental drivers , 2015 .

[27]  S. Brunke,et al.  One Small Step for a Yeast - Microevolution within Macrophages Renders Candida glabrata Hypervirulent Due to a Single Point Mutation , 2014, PLoS pathogens.

[28]  S. West,et al.  Group Formation, Relatedness, and the Evolution of Multicellularity , 2013, Current Biology.

[29]  B. Peyton,et al.  Growth, nitrogen utilization and biodiesel potential for two chlorophytes grown on ammonium, nitrate or urea , 2013, Journal of Applied Phycology.

[30]  Kevin R Foster,et al.  Improved use of a public good selects for the evolution of undifferentiated multicellularity , 2013, eLife.

[31]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[32]  A. Coleman,et al.  A COMPARATIVE ANALYSIS OF THE VOLVOCACEAE (CHLOROPHYTA) 1 , 2012, Journal of phycology.

[33]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[34]  John H. Koschwanez,et al.  Sucrose Utilization in Budding Yeast as a Model for the Origin of Undifferentiated Multicellularity , 2011, PLoS Biology.

[35]  C. Bock,et al.  UPDATING THE GENUS DICTYOSPHAERIUM AND DESCRIPTION OF MUCIDOSPHAERIUM GEN. NOV. (TREBOUXIOPHYCEAE) BASED ON MORPHOLOGICAL AND MOLECULAR DATA 1 , 2011, Journal of phycology.

[36]  A. Knoll The Multiple Origins of Complex Multicellularity , 2011 .

[37]  C. Bock,et al.  Taxonomic reassessment of the genus Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species , 2011 .

[38]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[39]  Jarrod D. Hadfield,et al.  MCMC methods for multi-response generalized linear mixed models , 2010 .

[40]  A. Nedelcu,et al.  Environmentally induced responses co-opted for reproductive altruism , 2009, Biology Letters.

[41]  A. Gardner,et al.  Capturing the superorganism: a formal theory of group adaptation , 2009, Journal of evolutionary biology.

[42]  K. Misawa,et al.  Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. , 2008, Molecular phylogenetics and evolution.

[43]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[44]  R. Michod,et al.  Evolution of Complexity in the Volvocine Algae: Transitions in Individuality Through Darwin's Eye , 2008, Evolution; international journal of organic evolution.

[45]  R. Grosberg,et al.  The Evolution of Multicellularity: A Minor Major Transition? , 2007 .

[46]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[47]  E. Fernández,et al.  Inorganic nitrogen assimilation in Chlamydomonas. , 2007, Journal of experimental botany.

[48]  C. Reynolds Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment , 2007, Hydrobiologia.

[49]  R. Michod,et al.  The evolutionary origin of an altruistic gene. , 2006, Molecular biology and evolution.

[50]  M. Lürling,et al.  Palmelloids formation in Chlamydomonas reinhardtii : defence against rotifer predators? , 2006 .

[51]  R. Michod,et al.  Multicellularity and the functional interdependence of motility and molecular transport , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Nedelcu Sex as a response to oxidative stress: stress genes co-opted for sex , 2005, Proceedings of the Royal Society B: Biological Sciences.

[53]  M. Lürling Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology , 2003 .

[54]  D. Mann,et al.  PHYLOGENETIC POSITION OF TOXARIUM, A PENNATE‐LIKE LINEAGE WITHIN CENTRIC DIATOMS (BACILLARIOPHYCEAE) 1 , 2003 .

[55]  Andrew H. Knoll,et al.  Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? , 2000, Paleobiology.

[56]  D. Kirk,et al.  Evolution of multicellularity in the volvocine algae. , 1999, Current opinion in plant biology.

[57]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[58]  P. Barré,et al.  Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: The availability of Flop determines the flocculation level , 1998, Yeast.

[59]  E. Donk Defenses in phytoplankton against grazing induced by nutrient limitation, UV-B stress and infochemicals , 1997, Aquatic Ecology.

[60]  M. Lürling,et al.  Altered cell wall morphology in nutrient‐deficient phytoplankton and its impact on grazers , 1997 .

[61]  M. Lürling,et al.  Zooplankton-induced unicell-colony transformation in Scenedesmus acutus and its effect on growth of herbivore Daphnia , 1996, Oecologia.

[62]  R. Kessin,et al.  How cellular slime molds evade nematodes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[64]  G. Bell,et al.  Soma and germ: an experimental approach using Volvox , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  D. Kirk,et al.  The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature. , 1986, Journal of cell science.

[66]  F. Florencio,et al.  Utilization of nitrate, nitrite and ammonium by Chlamydomonas reinhardii , 1983, Planta.

[67]  S. Waffenschmidt,et al.  Liberation of Reproductive Units in Volvox and Chlamydomonas: Proteolytic Processes , 1981, Berichte der Deutschen Botanischen Gesellschaft.

[68]  K. Nicholls,et al.  Desmatractum spryii sp. nov., a new member of the Chlorococcales and comments on related species , 1981 .

[69]  A. D. Boney Mucilage: The ubiquitous algal attribute , 1981 .

[70]  K. Porter,et al.  Enhancement of Algal Growth and Productivity by Grazing Zooplankton , 1976, Science.

[71]  Kazuo Nakamura,et al.  Chemical Factors Affecting Palmelloid‐Forming Activity of Chloroplatinic Acid on Chlamydomonas eugametos , 1976 .

[72]  S. Stanley An ecological theory for the sudden origin of multicellular life in the late precambrian. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[73]  R. Guillard,et al.  YELLOW‐GREEN ALGAE WITH CHLOROPHYLLIDE C 1, 2 , 1972 .

[74]  J. Bonner,et al.  Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. , 1947, The Journal of experimental zoology.

[75]  R. Chodat Scenedesmus: Etude de génétique, de systématique expérimentale et d'hydrobiologie , 1926 .

[76]  G. M. Smith New or Interesting Algae from the Lakes of Wisconsin , 1916 .

[77]  G. West Report on the Freshwater Algæ, including Phytoplankton, of the Third Tanganyika Expedition conducted by Dr. W. A. Cunnington, 1904–1905. , 1907 .

[78]  A. Bennett,et al.  A Contribution to the Freshwater Algæ of the South of England , 1897 .

[79]  57. W. Schmidle: Vier neue von Professor Lagerheim in Ecuador gesammelte Baumalgen , 1897, Berichte der Deutschen Botanischen Gesellschaft.

[80]  Paul Frederic Reinsch Contributiones ad floram Algarum aquæ dulcis Promontorii Bonæ Spei. , 1877 .

[81]  L. Bull Multicellularity , 2020, Emergence, Complexity and Computation.

[82]  R. Solé,et al.  Evolutionary Transitions to Multicellular Life: Principles and mechanisms , 2015 .

[83]  C. Bock,et al.  Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. , 2011 .

[84]  B. Whitton,et al.  The Freshwater Algal Flora of the British Isles , 2021 .

[85]  Philip C. J. Donoghue,et al.  Early life: Origins of multicellularity , 2010, Nature.

[86]  F. Cohn Kryptogamen-Flora von Schlesien; im Namen der Schlesischen Gesellschaft für vaterländische Cultur , 2009 .

[87]  Irina Olenina,et al.  Biovolumes and size-classes of phytoplankton in the Baltic Sea , 2006 .

[88]  H. Jakobsen,et al.  Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits , 2002 .

[89]  M. Lürling,et al.  Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? , 2000 .

[90]  L. Peperzak Daily irradiance governs growth rate and colony formation of Phaeocystis (Prymnesiophyceae) , 1993 .

[91]  T. Gilliland,et al.  THE CELL CYCLES OF CHLAMYDOMONAS AND CHLORELLA , 1985 .

[92]  E. Hegewald Investigations on the lakes of Peru and their phytoplankton. VII: Algae of Laguna Yarinacocha Pucallpa, with special reference to Scenedesmus denticulatus var. linearis , 1985 .

[93]  F. Hindák Studies on the chlorococcal algae, Chlorophyceae , 1977 .

[94]  G. Nygaard Quotient hypothesis and some new or little known phytoplankton organisms , 1949 .

[95]  H. Skuja Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden , 1948 .

[96]  G. M. Smith Myxophyceae, Phaeophyceae, Heterokonteae, and Chlorophyceae exclusive of the Desmidiaceae , 1920 .

[97]  G. Playfair Australian freshwater phytoplankton [Protococcoideae] , 1917 .

[98]  G. West,et al.  XXI.—A further Contribution to the Freshwater Plankton of the Scottish Lochs , 1906, Transactions of the Royal Society of Edinburgh.

[99]  Kryptogamen-Flora von Schlesien , 1885, Nature.