Enhanced Magnetic Field Sensitivity in Magnetoelectric Composite Based on Positive Magnetostrictive/Negative Magnetostrictive/Piezoelectric Laminate Heterostructure

Resonance magnetoelectric (ME) responses are investigated for the ME laminate heterostructure consisting of positive magnetostrictive material FeCuNbSiB, negative magnetostrictive material Ni and piezoelectric material PZT-8. On one hand, both a built-in magnetic field induced by the strong magnetic interactions between positive magnetostrictive and negative magnetostrictive materials and an intrinsic anisotropic field with obvious hysteresis and remnant magnetization in Ni layer result in a large zero-biased ME effect. The corresponding zero-biased ME voltage coefficient reaches 10.12 V/Oe (126.5 V/cm Oe), which is about 3 times larger than that of traditional Ni/PZT-8 (NP) laminate. On the other hand, the additional stress produced by the high magnetic permeability FeCuNbSiB layer enhances the magnetostriction of Ni layer and ME response. The corresponding maximum ME voltage coefficient (dV<sub>ME</sub>/dH<sub>ac</sub>) is 12.09 V/Oe (150.87 V/cm Oe) at bias magnetic field <inline-formula> <tex-math notation="LaTeX">$H_{\mathrm {dc}} = 4$ </tex-math></inline-formula> Oe. It is further found that even a step change of ac magnetic field less than 10<sup>−10</sup> T can be clearly distinguished by the proposed ME composite. The value of ME voltage sensitivity to dc magnetic fields (dV<sub>ME</sub>/dH<inline-formula> <tex-math notation="LaTeX">$_{\mathrm {dc}})$ </tex-math></inline-formula> reaches ~76.7 mV/Oe at <inline-formula> <tex-math notation="LaTeX">$H_{\mathrm {dc}}= 5$ </tex-math></inline-formula> Oe and <inline-formula> <tex-math notation="LaTeX">$H_{\mathrm {ac}} =0.1$ </tex-math></inline-formula> Oe. Correspondingly, the proposed laminate heterostructure is able to possess both strong ac and dc magnetic field sensitivities.

[1]  G. Lu,et al.  Circumferential-mode, quasi-ring-type, magnetoelectric laminate composite—a highly sensitive electric current and∕or vortex magnetic field sensor , 2005 .

[2]  Y. Wen,et al.  The magnetostrictive material effects on magnetic field sensitivity for magnetoelectric sensor , 2012 .

[3]  S. Dong,et al.  Small dc magnetic field response of magnetoelectric laminate composites , 2006 .

[4]  Xiangyong Zhao,et al.  High sensitive nonlinear modulation magnetoelectric magnetic sensors with a magnetostrictive metglas structure based on bell-shaped geometry , 2016 .

[5]  P. Duc,et al.  Geomagnetic sensors based on Metglas/PZT laminates , 2012 .

[6]  Dwight D. Viehland,et al.  Geomagnetic sensor based on giant magnetoelectric effect , 2007 .

[7]  D. Viehland,et al.  Self-powered low noise magnetic sensor , 2012 .

[8]  D. Viehland,et al.  Comparison of noise floor and sensitivity for different magnetoelectric laminates , 2010 .

[9]  G. Srinivasan,et al.  Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers , 2003, cond-mat/0307264.

[10]  D. Viehland,et al.  Improvement of magnetoelectric properties in Metglas/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminates by poling optimization , 2012 .

[11]  D. Viehland,et al.  Giant magnetoelectric effect in self-biased laminates under zero magnetic field , 2013 .

[12]  S. Dong,et al.  Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive , 2003 .

[13]  P. Duc,et al.  Spatial angular positioning device with three-dimensional magnetoelectric sensors. , 2012, The Review of scientific instruments.

[14]  Juanjuan Zhang,et al.  Enhancement of the magnetoelectric coupling in an A-line shape magnetostrictive/piezoelectric structure , 2017 .

[15]  N. Sun,et al.  Strong non-volatile voltage control of magnetism in magnetic/antiferroelectric magnetoelectric heterostructures , 2014 .