From cavity to circuit quantum electrodynamics

[1]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[2]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[3]  S. Gleyzes,et al.  Quantum Rabi Oscillations in Coherent and in Mesoscopic Cat Field States. , 2019, Physical review letters.

[4]  D. Estève,et al.  Antibunched Photons Emitted by a dc-Biased Josephson Junction. , 2018, Physical review letters.

[5]  Sylvain Schwartz,et al.  Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator , 2018, Nature.

[6]  M. Rispoli,et al.  Probing entanglement in a many-body–localized system , 2018, Science.

[7]  L. Frunzio,et al.  Fault-tolerant detection of a quantum error , 2018, Science.

[8]  D. Barredo,et al.  Observing the Space- and Time-Dependent Growth of Correlations in Dynamically Tuned Synthetic Ising Models with Antiferromagnetic Interactions , 2017, Physical Review X.

[9]  A. Wallraff,et al.  Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons , 2017, 1711.11569.

[10]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[11]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[12]  J. Raimond,et al.  Towards quantum simulation with circular Rydberg atoms , 2017 .

[13]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[14]  S. Ravets,et al.  Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models , 2016, Nature.

[15]  I. Bloch,et al.  Many-body interferometry of a Rydberg-dressed spin lattice , 2016, Nature Physics.

[16]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[17]  I. Bloch,et al.  Crystallization in Ising quantum magnets , 2015, Science.

[18]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[19]  John M. Martinis,et al.  Catching Time-Reversed Microwave Coherent State Photons with 99.4% Absorption Efficiency , 2013, 1311.1180.

[20]  R. W. Andrews,et al.  Bidirectional and efficient conversion between microwave and optical light , 2013, Nature Physics.

[21]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[22]  D. Wineland Nobel Lecture: Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[23]  Serge Haroche,et al.  Controlling photons in a box and exploring the quantum to classical boundary , 2013, Angewandte Chemie.

[24]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[25]  S. Girvin,et al.  Observation of quantum state collapse and revival due to the single-photon Kerr effect , 2012, Nature.

[26]  J. Raimond,et al.  Atomic clocks for controlling light fields , 2013 .

[27]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[28]  A. Pourkabirian,et al.  Observation of the dynamical Casimir effect in a superconducting circuit , 2011, Nature.

[29]  R J Schoelkopf,et al.  Circuit QED and engineering charge-based superconducting qubits , 2009, 0912.3902.

[30]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[31]  S. Deleglise,et al.  Progressive field-state collapse and quantum non-demolition photon counting , 2007, Nature.

[32]  S. Deleglise,et al.  Quantum jumps of light recording the birth and death of a photon in a cavity , 2006, Nature.

[33]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[34]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[35]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[36]  Yasunobu Nakamura,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[37]  M. Devoret,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[38]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[39]  S. Haroche,et al.  A complementarity experiment with an interferometer at the quantum–classical boundary , 2001, Nature.

[40]  P. Bertet,et al.  Step-by-step engineered multiparticle entanglement , 2000, Science.

[41]  J. Raimond,et al.  Generation of Einstein-Podolsky-Rosen Pairs of Atoms , 1997 .

[42]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[43]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[44]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[45]  J. Raimond,et al.  From Lamb shift to light shifts: Vacuum and subphoton cavity fields measured by atomic phase sensitive detection. , 1994, Physical review letters.

[46]  Hinds,et al.  Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. , 1992, Physical review letters.

[47]  Heinzen,et al.  Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator. , 1987, Physical review letters.

[48]  Clarke,et al.  Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. , 1987, Physical review. B, Condensed matter.

[49]  Meschede,et al.  Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. , 1987, Physical review letters.

[50]  A. Leggett Quantum Mechanics at the Macroscopic Level , 1986 .

[51]  D. Kleppner,et al.  Inhibited spontaneous emission by a Rydberg atom. , 1985, Physical review letters.

[52]  Dehmelt,et al.  Observation of inhibited spontaneous emission. , 1985, Physical review letters.

[53]  Meschede,et al.  One-atom maser. , 1985, Physical review letters.

[54]  A. Leggett Schrödinger's cat and her laboratory cousins , 2009 .

[55]  Daniel Kleppner,et al.  Rydberg Atoms in "Circular" States , 1983 .

[56]  J. Raimond,et al.  Observation of Self-Induced Rabi Oscillations in Two-Level Atoms Excited Inside a Resonant Cavity: The Ringing Regime of Superradiance , 1983 .

[57]  J. Raimond,et al.  Observation of cavity-enhanced single-atom spontaneous emission , 1983 .

[58]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[59]  K. Drexhage Influence of a dielectric interface on fluorescence decay time , 1970 .

[60]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[61]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[62]  S. Zienau,et al.  The influence of retardation on the London-Van Der Waals force , 1957 .