Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries I. Analysis by Electrochemical and Spectroscopic Examination

I. Analysis by Electrochemical and Spectroscopic Examination Tsuyoshi Sasaki,* Takamasa Nonaka, Hideaki Oka, Chikaaki Okuda, Yuichi Itou, Yasuhito Kondo, Yoji Takeuchi, Yoshio Ukyo,* Kazuyoshi Tatsumi, and Shunsuke Muto* Toyota Central Research and Development Laboratories, Incorporated, Nagoakute 480-1192, Japan Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

[1]  C. Delmas,et al.  Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2 , 2003 .

[2]  Robert Kostecki,et al.  Diagnostic Evaluation of Detrimental Phenomena in High-Power Lithium-Ion Batteries , 2005 .

[3]  Hironori Kobayashi,et al.  Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells: I. An approach to the power fading mechanism using XANES , 2007 .

[4]  G. Kothleitner,et al.  Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. , 2003, Ultramicroscopy.

[5]  G. L. Henriksen,et al.  Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries , 2004 .

[6]  Sam F. Y. Li,et al.  Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2 , 2001 .

[7]  K. Amine,et al.  Factors responsible for impedance rise in high power lithium ion batteries , 2001 .

[8]  Daniel P. Abraham,et al.  Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells , 2002 .

[9]  Richard T. Haasch,et al.  Surface Characterization of Electrodes from High Power Lithium-Ion Batteries , 2002 .

[10]  A. Mansour,et al.  An In Situ X‐Ray Absorption Spectroscopic Study of Charged Li ( 1 − z ) Ni ( 1 + z ) O 2 Cathode Material , 1999 .

[11]  Y. Nishi,et al.  Lithium-ion rechargeable cells with LiCoO2 and carbon electrodes , 1993 .

[12]  T. Yao,et al.  Changes in electronic structure by Li ion deintercalation in LiNiO2 from nickel L-edge and O K-edge XANES , 2001 .

[13]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[14]  B. Fultz,et al.  An Electron Energy-Loss Spectrometry Study of Charge Compensation in LiNi_(0.8)Co_(0.2)O_2 , 2003 .

[15]  Chester G. Motloch,et al.  Effects of Reference Performance Testing during Aging Using Commercial Lithium-Ion Cells , 2006 .

[16]  Ralph E. White,et al.  Studies on Capacity Fade of Spinel-Based Li-Ion Batteries , 2002 .

[17]  P. Hopke,et al.  Application of modified alternating least squares regression to spectroscopic image analysis , 2003 .

[18]  Young Joo Lee,et al.  Diagnostic analysis of electrodes from high-power lithium-ion cells cycled under different conditions , 2004 .

[19]  Daniel P. Abraham,et al.  Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells , 2003 .

[20]  Khalil Amine,et al.  Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries , 2001 .

[21]  Y. Ukyo,et al.  In situ XAFS and micro-XAFS studies on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries , 2006 .

[22]  R. Puetter,et al.  Spectral restoration and energy resolution improvement of electron energy-loss spectra by Pixon reconstruction: I. Principle and test examples. , 2006, Journal of electron microscopy.

[23]  Dennis W. Dees,et al.  Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells , 2004 .

[24]  J. Shim,et al.  Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature , 2002 .

[25]  Y. Ukyo,et al.  Performance of LiNiCoO2 materials for advanced lithium-ion batteries , 2005 .

[26]  K. Nikolowski,et al.  Behaviour of LiNi0.8Co0.2O2-cathodes at high cycle numbers , 2007 .

[27]  Aline Rougier,et al.  An Overview of the Li(Ni,M)O2 Systems: Syntheses, Structures and Properties , 1999 .

[28]  Y. Ukyo,et al.  Surface-Sensitive X-Ray Absorption Study on LiNi0.8Co0.15Al0.05O2 Cathode Material for Lithium-Ion Batteries , 2007 .

[29]  T. R. Gosnell,et al.  Digital Image Reconstruction: Deblurring and Denoising , 2005 .

[30]  Vojtech Svoboda,et al.  Capacity and power fading mechanism identification from a commercial cell evaluation , 2007 .

[31]  Tsutomu Ohzuku,et al.  Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries , 1995 .

[32]  Chester G. Motloch,et al.  Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries , 2003 .

[33]  T. Ohzuku,et al.  Electrochemistry and Structural Chemistry of LiNiO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1993 .

[34]  H. Sakaebe,et al.  Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells II: An approach to the power fading mechanism using hard X-ray photoemission spectroscopy , 2007 .

[35]  C. Delmas,et al.  The cycling properties of the LixNi1-yCoyO2 electrode , 1993 .

[36]  Robert Kostecki,et al.  Degradation of LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode surfaces in high-power lithium-ion batteries , 2002 .

[37]  Kamen Nechev,et al.  Properties of large Li ion cells using a nickel based mixed oxide , 2003 .

[38]  Jeff Dahn,et al.  Rechargeable LiNiO2 / Carbon Cells , 1991 .

[39]  Tsuyoshi Sasaki,et al.  Effects of Mg-substitution in Li(Ni,Co,Al)O2 positive electrode materials on the crystal structure and battery performance , 2007 .

[40]  K. Amine,et al.  Symmetric cell approach towards simplified study of cathode and anode behavior in lithium ion batteries. , 2001 .

[41]  T. Devine,et al.  Corrosion of Aluminum Current Collectors in High-Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles , 2007 .

[42]  I. Uchida,et al.  In Situ Observation of LiNiO2 Single‐Particle Fracture during Li ‐ Ion Extraction and Insertion , 1999 .