Trends and drivers in global surface ocean pH over the past 3 decades

Abstract. We report global long-term trends in surface ocean pH using a new pH data set computed by combining fCO2 observations from the Surface Ocean CO2 Atlas (SOCAT) version 2 with surface alkalinity estimates based on temperature and salinity. Trends were determined over the periods 1981–2011 and 1991–2011 for a set of 17 biomes using a weighted linear least squares method. We observe significant decreases in surface ocean pH in ~70% of all biomes and a mean rate of decrease of 0.0018 ± 0.0004 yr−1 for 1991–2011. We are not able to calculate a global trend for 1981–2011 because too few biomes have enough data for this. In half the biomes, the rate of change is commensurate with the trends expected based on the assumption that the surface ocean pH change is only driven by the surface ocean CO2 chemistry remaining in a transient equilibrium with the increase in atmospheric CO2. In the remaining biomes, deviations from such equilibrium may reflect that the trend of surface ocean fCO2 is not equal to that of the atmosphere, most notably in the equatorial Pacific Ocean, or may reflect changes in the oceanic buffer (Revelle) factor. We conclude that well-planned and long-term sustained observational networks are key to reliably document the ongoing and future changes in ocean carbon chemistry due to anthropogenic forcing.

[1]  R. Feely,et al.  Ocean acidification: the other CO2 problem. , 2009, Annual review of marine science.

[2]  S. Doney,et al.  An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009 , 2013 .

[3]  F. Millero,et al.  A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media , 1987 .

[4]  J. Orr Recent and Future Changes in Ocean Carbonate Chemistry , 2011 .

[5]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[6]  Andrew J. Watson,et al.  Corrigendum to Climatological mean and decadal change in surface ocean pCO2, and net sea―air CO2 flux over the global oceans , 2009 .

[7]  O. Llinás,et al.  The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004 , 2010 .

[8]  Scott C. Doney,et al.  Ocean acidification : a critical emerging problem for the ocean sciences , 2009 .

[9]  Andrew J. Watson,et al.  Corrigendum to "Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans" [Deep Sea Res. II 56 (2009) 554-577] , 2009 .

[10]  M. Telszewski,et al.  Estimating temporal and spatial variation of ocean surface p CO 2 in the North Pacific using a self-organizing map neural network technique , 2013 .

[11]  G. McKinley,et al.  Global open-ocean biomes: mean and temporal variability , 2014 .

[12]  M. Heimann,et al.  Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme , 2014 .

[13]  Taro Takahashi,et al.  Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations , 2014 .

[14]  B. Delille CO2 in Seawater: Equilibrium, Kinetics, Isotopes , 2002 .

[15]  N. Bates Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades , 2007 .

[16]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[17]  M. Payne,et al.  A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink , 2013 .

[18]  R. Lukas,et al.  Physical and biogeochemical modulation of ocean acidification in the central North Pacific , 2009, Proceedings of the National Academy of Sciences.

[19]  Y. Astor,et al.  A Time-Series View of Changing Surface Ocean Chemistry Due to Ocean Uptake of Anthropogenic Co2 and Ocean Acidification , 2014 .

[20]  Nicolas Gruber,et al.  Long-term trends in surface ocean pH in the North Atlantic , 2014 .

[21]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[22]  J. Schnoor Ocean acidification. , 2013, Environmental science & technology.

[23]  Taro Takahashi,et al.  Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study , 1993 .

[24]  Richard A. Feely,et al.  Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans , 2006 .

[25]  Atul K. Jain,et al.  Global carbon budget 2013 , 2013 .

[26]  C. Sweeney,et al.  The observed evolution of oceanic pCO2 and its drivers over the last two decades , 2012 .

[27]  P. Landschützer,et al.  Recent variability of the global ocean carbon sink , 2014 .

[28]  Galen A. McKinley,et al.  Global trends in surface ocean pCO2 from in situ data , 2013 .

[29]  C. Culberson,et al.  MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1 , 1973 .

[30]  Christoph Heinze,et al.  Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM) , 2012 .

[31]  Jacqueline Boutin,et al.  An update to the Surface Ocean CO2 Atlas (SOCAT version 2) , 2013 .

[32]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[33]  N. Metzl Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991–2007) , 2009 .

[34]  D. Wolf-Gladrow,et al.  CO2 in Seawater: Equilibrium, Kinetics, Isotopes , 2001 .

[35]  Andrew J. Watson,et al.  Tracking the Variable North Atlantic Sink for Atmospheric CO2 , 2009, Science.

[36]  M. Payne,et al.  A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink , 2013 .

[37]  Jacqueline Boutin,et al.  A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT) , 2012 .

[38]  T. Tanhua,et al.  Inorganic carbon and pH levels in the Rockall Trough 1991-2010 , 2012 .

[39]  A. Olsen,et al.  Optimal evaluation of the surface ocean CO2 system in the northern North Atlantic using data from voluntary observing ships , 2009 .

[40]  G. McKinley,et al.  Southern Ocean carbon trends: Sensitivity to methods , 2014 .

[41]  Nicholas R. Bates,et al.  A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification , 2014 .

[42]  M. Levasseur,et al.  Ocean Biogeochemical Dynamics , 2007 .

[43]  Corinne Le Quéré Trends in the land and ocean carbon uptake , 2010 .

[44]  S. Dutkiewicz,et al.  Printer-friendly Version Interactive Discussion , 2022 .

[45]  The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2008 , 2010 .

[46]  A. Kozyr,et al.  Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1968-2007 (Version 2007) , 2008 .

[47]  The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2006 , 2009 .

[48]  Abhishek Vijayvargiya One-Way Analysis of Variance , 2009 .

[49]  Enrique González-Dávila,et al.  Interannual variability of the upper ocean carbon cycle in the northeast Atlantic Ocean , 2007 .

[50]  L. Uppström The boron/chlorinity ratio of deep-sea water from the Pacific Ocean , 1974 .

[51]  F. Joos,et al.  Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model , 2009 .

[52]  Christoph Heinze,et al.  Long-term surface pCO2 trends from observations and models , 2014 .

[53]  B. Tilbrook,et al.  An update to the Surface Ocean CO 2 Atlas (SOCAT) , 2013 .

[54]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .