Using fundamental principles to understand and optimize nonlinear-optical materials

Our approach to the problem of understanding the nonlinear-optical response of a material focuses on fundamental concepts, which are exact and lead to broad results that encompass all material systems. For example, one can calculate precisely and without approximation the fundamental limit of the efficiency of any optical phenomenon. Such limits, in turn, when built into a scale-invariant figure of merit can be used to determine what makes a material optimal for maximizing a desired property, such as its nonlinear-optical response. However, since the results are broad and general (for example, fundamental guidelines for making better quantum systems may demand a particular shape of an electron cloud or energy level spacing), the difficulty arises in implementing such fine tuning using the approaches available to the synthetic chemist or nanotechnologist. Undoubtedly, an intimate interplay of empirical and fundamental approaches will need to be applied to the problem of optimizing molecules and materials. Much of the work in the field of nonlinear optics has by necessity focused on empirical approaches. Our work focuses on the fundamental approach, which is beginning to bear fruit in providing practical guidelines for making new materials. This paper reviews progress made over the last decade.

[1]  John Kerr Ll.D. XL. A new relation between electricity and light: Dielectrified media birefringent , 1875 .

[2]  Mark G. Kuzyk TRUNCATED SUM RULES AND THEIR USE IN CALCULATING FUNDAMENTAL LIMITS OF NONLINEAR SUSCEPTIBILITIES , 2006 .

[3]  Seth R. Marder,et al.  Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation , 1994 .

[4]  Hans Kuhn,et al.  Free Electron Model for Absorption Spectra of Organic Dyes , 1948 .

[5]  Steven M. Risser,et al.  Structure-function relationships for .beta., the first molecular hyperpolarizability , 1993 .

[6]  Kenneth D. Singer,et al.  Relaxation phenomena in polymer nonlinear optical materials , 1991 .

[7]  Adelbert Owyoung,et al.  Origin of the Nonlinear Refractive Index of Liquid C Cl 4 , 1971 .

[8]  Jayant Kumar,et al.  Dispersions of electroabsorption susceptibilities: application to a polymeric Langmuir-Blodgett film , 1997 .

[9]  Mark G. Kuzyk Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities , 2005 .

[10]  Jayant Kumar,et al.  Electroabsorption spectroscopy study of an azopolymer film fabricated by electrostatic adsorption , 1998 .

[11]  Juefei Zhou,et al.  Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer. , 2007, Optics letters.

[12]  Ivan Biaggio,et al.  Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules , 2007 .

[13]  A. Crova,et al.  JOHN KERR. — Electro-optic observations on various liquids (Observations électro-optiques sur divers liquides); Phil. Magazine, 5e série, t. VIII, p. 85-102; août 1879 , 1879 .

[14]  Mark G. Kuzyk,et al.  Fundamental limits on two-photon absorption cross sections , 2003 .

[15]  Bouchta Sahraoui,et al.  Intrinsic hyperpolarizability of 3-dicyanomethylene-5,5-dimethyl-1-[2-(4-hydroxyphenyl)ethenyl]-cyclohexene nanocrystallites incorporated into the photopolymer matrices , 2007 .

[16]  Koen Clays,et al.  Why hyperpolarizabilities fall short of the fundamental quantum limits. , 2004, The Journal of chemical physics.

[17]  Mark G. Kuzyk,et al.  Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems , 1990 .

[18]  Kenneth D. Singer,et al.  Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds , 1989 .

[19]  H. Avramopoulos,et al.  Complete switching in a three-terminal Sagnac switch , 1991, IEEE Photonics Technology Letters.

[20]  G. Hamoniaux,et al.  Molecular dynamics of liquid benzene via femtosecond pulses laser excitation , 1987 .

[21]  Benoît Champagne,et al.  Comment on "physical limits on electronic nonlinear molecular susceptibilities". , 2005, Physical review letters.

[22]  Mark G. Kuzyk,et al.  DOUBLY RESONANT TWO-PHOTON ABSORPTION CROSS-SECTIONS: IT DOES NOT GET ANY BIGGER THAN THIS , 2004 .

[23]  Mark G. Kuzyk,et al.  Quantum limits of the hyper-Rayleigh scattering susceptibility , 2001 .

[24]  Zhifu Liu,et al.  Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies. , 2007, Journal of the American Chemical Society.

[25]  Tapas Kar,et al.  Theoretical study of the effect of structural modifications on the hyperpolarizabilities of indigo derivatives. , 2009, The journal of physical chemistry. A.

[26]  T. Ghanty,et al.  Heterocycle-based isomeric chromophores with substantially varying NLO properties: a new structure-property correlation study. , 2008, The journal of physical chemistry. A.

[27]  J. Oudar,et al.  Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment , 1977 .

[28]  Kai Song,et al.  Combined molecular and supramolecular bottom-up nanoengineering for enhanced nonlinear optical response: experiments, modeling, and approaching the fundamental limit. , 2007, The Journal of chemical physics.

[29]  M. Kuzyk,et al.  Sagnac interferometric intensity-dependent refractive-index measurements of polymer optical fiber. , 1996, Optics letters.

[30]  Daniel S. Chemla,et al.  Optical nonlinearities of various substituted benzene molecules in the liquid state, and comparison with solid state nonlinear susceptibilities , 1977 .

[31]  Brian J. Orr,et al.  Perturbation theory of the non-linear optical polarization of an isolated system , 1971 .

[32]  Mark G. Kuzyk,et al.  Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymer , 1998 .

[33]  Mark G Kuzyk,et al.  The effects of geometry on the hyperpolarizability. , 2006, The Journal of chemical physics.

[34]  C. W. Dirk,et al.  The contribution of π electrons to second harmonic generation in organic molecules , 1986 .

[35]  Sara Eisler,et al.  The surprising nonlinear optical properties of conjugated polyyne oligomers. , 2004, The Journal of chemical physics.

[36]  Reginald C. Farrow,et al.  Direct measurement of a subpicosecond birefringent response in CS2 , 1982 .

[37]  M. Kuzyk,et al.  Fundamental limits on third-order molecular susceptibilities. , 2000, Optics letters.

[38]  Mark G. Kuzyk,et al.  Squarylium dye-doped polymer systems as quadratic electrooptic materials , 1990 .

[39]  Kuzyk Physical limits on electronic nonlinear molecular susceptibilities , 2000, Physical review letters.

[40]  Mark G. Kuzyk,et al.  Fabrication and mechanical behavior of dye-doped polymer optical fiber , 2002 .

[41]  Kenneth D. Singer,et al.  Second harmonic generation in poled polymer films , 1986 .

[42]  Koji Ohta,et al.  Relationship between third-order nonlinear optical properties and magnetic interactions in open-shell systems: a new paradigm for nonlinear optics. , 2007, Physical review letters.

[43]  D J Welker,et al.  Fabrication and characterization of single-mode electro-optic polymer optical fiber. , 1998, Optics letters.

[44]  C. H. Wang,et al.  Nonlinear Optical Susceptibility of a Model Guest/Host Polymeric System as Investigated by Electro-Optics and Second Harmonic Generation , 1994 .

[45]  Mark G. Kuzyk,et al.  Quadratic electroabsorption studies of third-order susceptibility mechanisms in dye-doped polymers , 1994 .

[46]  Aleksander Rebane,et al.  Quantitative Prediction of Two-Photon Absorption Cross Section Based on Linear Spectroscopic Properties† , 2008 .

[47]  Mark G. Kuzyk,et al.  Amplified spontaneous emission and recoverable photodegradation in polymer doped with Disperse Orange 11 , 2002 .

[48]  Greene,et al.  Phonon-mediated optical nonlinearity in polydiacetylene. , 1988, Physical review letters.

[49]  Wong,et al.  Nonlinear optical properties of linear chains and electron-correlation effects. , 1988, Physical review. B, Condensed matter.

[50]  Mark G. Kuzyk,et al.  Intrinsic Hyperpolarizabilities as a Figure of Merit for Electro-optic Molecules , 2008, 0807.0886.

[51]  Mark G. Kuzyk,et al.  Monte Carlo studies of the fundamental limits of the intrinsic hyperpolarizability , 2007, 0708.1219.

[52]  Williams,et al.  Nonlinear optical response of excitons confined to one dimension. , 1987, Physical review letters.

[53]  Joseph Zyss,et al.  Second order optical nonlinearity in octupolar aromatic systems , 1992 .

[54]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[55]  Reginald C. Farrow,et al.  Microscopic dynamics in simple liquids by subpicosecond birefringences , 1984 .

[56]  Mark G. Kuzyk,et al.  Self-Healing and Laser Hardening of Nonlinear-Optical Materials , 2007 .

[57]  Hans Kuhn,et al.  A Quantum‐Mechanical Theory of Light Absorption of Organic Dyes and Similar Compounds , 1949 .

[58]  Kenneth D. Singer,et al.  Exceptional second‐order nonlinear optical susceptibilities of quinoid systems , 1981 .

[59]  Mark G. Kuzyk,et al.  Single-mode nonlinear-optical polymer fibers , 1996 .

[60]  N. Whitaker,et al.  Measurement of ultrafast optical nonlinearities using a modified Sagnac interferometer. , 1991, Optics letters.

[61]  W. Webb,et al.  Design of organic molecules with large two-photon absorption cross sections. , 1998, Science.

[62]  M. Kuzyk,et al.  Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer. , 2008, The Journal of chemical physics.

[63]  Mark G. Kuzyk,et al.  Optimizing potential energy functions for maximal intrinsic hyperpolarizability , 2007, 0704.1687.

[64]  Seth R. Marder,et al.  Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication , 1999, Nature.

[65]  Mark G Kuzyk,et al.  Fundamental limits of the dispersion of the two-photon absorption cross section. , 2005, The Journal of chemical physics.

[66]  Jingdong Luo,et al.  Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores. , 2005, Journal of the American Chemical Society.

[67]  J. Oudar,et al.  Second-order polarizabilities of some aromatic molecules , 1975 .

[68]  Benoît Champagne,et al.  Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull pi-conjugated systems. , 2006, The Journal of chemical physics.

[69]  Dirk,et al.  Missing-state analysis: A method for determining the origin of molecular nonlinear optical properties. , 1989, Physical review. A, General physics.

[70]  Dirk,et al.  Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[71]  Shahar Keinan,et al.  Molecular design of porphyrin-based nonlinear optical materials. , 2008, The journal of physical chemistry. A.

[72]  Juefei Zhou,et al.  Pushing the hyperpolarizability to the limit. , 2006, Optics letters.

[73]  John Kerr Ll.D. Electro-optic observation on various liquids , 1879 .

[74]  J. Perry,et al.  Relation Between Bond-Length Alternation and Second Electronic Hyperpolarizability of Conjugated Organic Molecules , 1993, Science.

[75]  Jayant Kumar,et al.  Dispersion of χ(3) in polydiacetylene films from electroabsorption spectroscopy , 1997 .

[76]  G. F. Lipscomb,et al.  An exceptionally large linear electro‐optic effect in the organic solid MNA , 1981 .

[77]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[78]  Mark G. Kuzyk,et al.  Optical second‐harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with disperse red 1 azo dye , 1995 .

[79]  Anthony F. Garito,et al.  Frequency dependence of the optical kerr effect and third-order electronic nonlinear-optical processes of organic liquids , 1989 .

[80]  Yuxia Zhao,et al.  Modulated conjugation as a means for attaining a record high intrinsic hyperpolarizability. , 2007, Optics letters.

[81]  Aleksander Rebane,et al.  Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer , 2004 .

[82]  Mark G. Kuzyk,et al.  Erratum: Physical Limits on Electronic Nonlinear Molecular Susceptibilities [Phys. Rev. Lett. 85, 001218 (2000)] , 2003 .

[83]  Indrajit Roy,et al.  Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. , 2003, Journal of the American Chemical Society.

[84]  M. Kuzyk,et al.  Fundamental limits of all nonlinear-optical phenomena that are representable by a second-order nonlinear susceptibility. , 2006, The Journal of chemical physics.

[85]  Weitao Yang,et al.  Designing molecules by optimizing potentials. , 2006, Journal of the American Chemical Society.

[86]  Kenneth D. Singer,et al.  Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation , 1981 .

[87]  Mark G. Kuzyk,et al.  A simplified three‐level model describing the molecular third‐order nonlinear optical susceptibility , 1992 .

[88]  Zhang,et al.  Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape , 2000, Science.

[89]  Arnold Migus,et al.  Efficient femtosecond optical Kerr shutter , 1983 .

[90]  Mark G. Kuzyk,et al.  Absolute molecular optical Kerr effect spectroscopy of dilute organic solutions and neat organic liquids , 2001 .

[91]  J. Oudar,et al.  Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds , 1977 .

[92]  Mark G. Kuzyk,et al.  Fundamental limits on third-order molecular susceptibilities: erratum , 2003 .

[93]  Edward H. Sargent,et al.  Cross-linked C60 Polymer Breaches the Quantum Gap , 2004 .

[94]  Koen Clays,et al.  A new dipole-free sum-over-states expression for the second hyperpolarizability. , 2008, The Journal of chemical physics.

[95]  Mark G. Kuzyk,et al.  Quick and simple method to measure third‐order nonlinear optical properties of dye‐doped polymer films , 1989 .

[96]  Sankaran Thayumanavan,et al.  Structure−Property Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives , 2000 .