A non extensive approach to the entropy of symbolic sequences

[1]  Bruce J. West,et al.  Non-Gaussian statistics of anomalous diffusion: The DNA sequences of prokaryotes , 1998 .

[2]  C. Tsallis,et al.  Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions , 1998 .

[3]  Bruce J. West,et al.  Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences , 1998 .

[4]  H. Herzel,et al.  Estimating the entropy of DNA sequences. , 1997, Journal of theoretical biology.

[5]  C. Tsallis,et al.  Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems , 1997, cond-mat/9709226.

[6]  C. Tsallis,et al.  Power-law sensitivity to initial conditions—New entropic representation , 1997 .

[7]  Ebeling,et al.  Self-similar sequences and universal scaling of dynamical entropies. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  West,et al.  Dynamical approach to Lévy processes. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  J. Freund Asymptotic scaling behavior of block entropies for an intermittent process. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  P. Lio’,et al.  High statistics block entropy measures of DNA sequences. , 1996, Journal of theoretical biology.

[11]  Bruce J. West,et al.  A dynamical approach to DNA sequences , 1996 .

[12]  Bruce J. West,et al.  Dynamical model for DNA sequences. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Zanette,et al.  Thermodynamics of anomalous diffusion. , 1995, Physical review letters.

[14]  Ebeling,et al.  Entropies of biosequences: The role of repeats. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Bruce J. West,et al.  Dynamical approach to anomalous diffusion: Response of Lévy processes to a perturbation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Zanette,et al.  Fractal random walks from a variational formalism for Tsallis entropies. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Riccardo Mannella,et al.  A Dynamical Approach to Fractional Brownian Motion , 1993, chao-dyn/9308004.

[18]  C. Beck,et al.  Thermodynamics of chaotic systems: References , 1993 .

[19]  W. Ebeling Entropy and information in processes of self-organization: uncertainty and predictability , 1993 .

[20]  Werner Ebeling,et al.  Word frequency and entropy of symbolic sequences: a dynamical perspective , 1992 .

[21]  Xiao-Jing Wang,et al.  Dynamical sporadicity and anomalous diffusion in the Lévy motion. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  Wentian Li,et al.  Long-range correlation and partial 1/fα spectrum in a noncoding DNA sequence , 1992 .

[23]  Werner Ebeling,et al.  Entropy of symbolic sequences: the role of correlations , 1991 .

[24]  P. Gaspard,et al.  Sporadicity: Between periodic and chaotic dynamical behaviors. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[26]  Werner Ebeling,et al.  Dynamics and Complexity of Biomolecules , 1987 .

[27]  Györgyi,et al.  Entropy decay as a measure of stochasticity in chaotic systems. , 1986, Physical review. A, General physics.

[28]  Geisel,et al.  Accelerated diffusion in Josephson junctions and related chaotic systems. , 1985, Physical review letters.

[29]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[30]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[31]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[32]  C. Tsallis,et al.  Statistical-Mechanical Foundation of the Ubiquity of the Lévy Distributions in Nature [Phys. Rev. Lett. 75, 3589 (1995)] , 1996 .

[33]  M. Shlesinger,et al.  Anomalous diffusion and Lévy statistics in intermittent chaotic systems , 1995 .

[34]  West,et al.  Influence of the environment on anomalous diffusion. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  W. Ebeling,et al.  Power law distributions of spectral density and higher order entropies , 1994 .

[36]  Elliott W. Montroll,et al.  Nonequilibrium phenomena. II - From stochastics to hydrodynamics , 1984 .

[37]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[38]  Karma Dajani Ergodic Theory , 1963 .