Bayesian inference for polyhazard models in the presence of covariates

Polyhazard models are a flexible family for fitting lifetime data. Their main advantage over the single hazard models, such as the Weibull and the log-logistic models, is to include a large amount of nonmonotone hazard shapes, as bathtub and multimodal curves. The main goal of this paper is to present a Bayesian inference procedure for the polyhazard models in the presence of covariates, generalizing the Bayesian analysis presented in Berger and Sun (J. Amer. Statist. Assoc. 88 (1993) 1412), Basu et al. (J. Statist. Plan Inference 78 (1999) 255) and Kuo and Yang (Statist. Probab. Lett. 47 (2000) 229). The two most important particular polyhazard models, namely poly-Weibull, poly-log-logistic and a combination of both are studied in detail. The methodology is illustrated in two real medical datasets.

[1]  Walter R. Gilks,et al.  Full conditional distributions , 1995 .

[2]  C. D. Litton,et al.  Theory of Probability (3rd Edition) , 1984 .

[3]  F Louzada-Neto,et al.  Polyhazard Models for Lifetime Data , 1999, Biometrics.

[4]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[5]  Chiranjit Mukhopadhyay,et al.  Bayesian analysis for masked system failure data using non-identical Weibull models , 1999 .

[6]  H. Jeffreys,et al.  Theory of probability , 1896 .

[7]  Elsayed A. Elsayed,et al.  A general model for accelerated life testing with time‐dependent covariates , 1999 .

[8]  Anthony C. Davison,et al.  Inference for the poly-Weibull model , 2000 .

[9]  William Q. Meeker,et al.  Optimum Accelerated Life Tests Wth a Nonconstant Scale Parameter , 1994 .

[10]  L. Kuo,et al.  Bayesian reliability modeling for masked system lifetime data , 2000 .

[11]  T. Louis,et al.  Use of Tumour Lethality to Interpret Tumorigenicity Experiments Lacking Cause‐Of‐Death Data , 1988 .

[12]  James O. Berger,et al.  Bayesian Analysis for the Poly-Weibull Distribution , 1993 .

[13]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[14]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[15]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[16]  Walter R. Gilks,et al.  Hypothesis testing and model selection , 1995 .

[17]  Walter R. Gilks,et al.  Corrigendum: Adaptive Rejection Metropolis Sampling , 1997 .

[18]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[19]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[20]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[21]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[22]  J. Klein,et al.  Survival Analysis: Techniques for Censored and Truncated Data , 1997 .

[23]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[24]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[25]  S. Bennett,et al.  Log‐Logistic Regression Models for Survival Data , 1983 .

[26]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[27]  H. A. David The theory of competing risks , 1980 .

[28]  H. A. David,et al.  The Theory of Competing Risks. , 1979 .