Systematic ab initio study of curvature effects in carbon nanotubes

We investigate curvature effects on geometric parameters, energetics, and electronic structure of zigzag nanotubes with fully optimized geometries from first-principle calculations. The calculated curvature energies, which are inversely proportional to the square of radius, are in good agreement with the classical elasticity theory. The variation of the band gap with radius is found to differ from simple rules based on the zone folded graphene bands. Large discrepancies between tight binding and first-principles calculations of the band gap values of small nanotubes are discussed in detail.

[1]  S. Ciraci,et al.  Reversible band-gap engineering in carbon nanotubes by radial deformation , 2002, cond-mat/0203226.

[2]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[3]  S. Ciraci,et al.  Tunable adsorption on carbon nanotubes. , 2001, Physical review letters.

[4]  S. Ciraci,et al.  Exohydrogenated single-wall carbon nanotubes , 2001, cond-mat/0105244.

[5]  S. Eggert,et al.  Curvature, hybridization, and STM images of carbon nanotubes , 2001, cond-mat/0105002.

[6]  Charles M. Lieber,et al.  Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes , 2001, Science.

[7]  K. Chang,et al.  Resonant transport in single-wall armchair carbon nanotubes with local mirror-symmetry-breaking deformations , 2001 .

[8]  G. Muralidharan,et al.  Apatites and britholites, are they akin - as probed by Eu3+ luminescence? , 2001 .

[9]  S. Ciraci,et al.  Variable and reversible quantum structures on a single carbon nanotube , 2000, cond-mat/0011309.

[10]  S. Ciraci,et al.  Pressure-induced interlinking of carbon nanotubes , 2000, cond-mat/0008476.

[11]  C. Dekker,et al.  Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes , 2000 .

[12]  Alex Kleiner,et al.  Band gaps of primary metallic carbon nanotubes , 2000, cond-mat/0007244.

[13]  Philip Kim,et al.  Structure and Electronic Properties of Carbon Nanotubes , 2000 .

[14]  A. Kityk,et al.  Infinite Lifshitz point in incommensurate type-I dielectrics , 1999 .

[15]  D. Sánchez-Portal,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1998, cond-mat/9811363.

[16]  L. Chico,et al.  Carbon-Nanotube-Based Quantum Dot , 1998 .

[17]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[18]  Alexey Bezryadin,et al.  MULTIPROBE TRANSPORT EXPERIMENTS ON INDIVIDUAL SINGLE-WALL CARBON NANOTUBES , 1998 .

[19]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[20]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[21]  P. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1996, Science.

[22]  C. Kane,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1996, cond-mat/9608146.

[23]  Muramatsu,et al.  Energy gaps of semiconducting nanotubules. , 1995, Physical review. B, Condensed matter.

[24]  S. Muramatsu,et al.  Chirality-dependence of energy gaps of semiconducting nanotubules , 1995 .

[25]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[26]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[27]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[28]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[29]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[30]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[31]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[32]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[33]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[34]  Gary G. Tibbetts,et al.  Why are carbon filaments tubular , 1984 .

[35]  M. Kakihana,et al.  Effect of A - and B -cation substitutions on the phase stability of PbTiO 3 ceramics , 1999 .

[36]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .