The in vivo biofilm.

Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms, and we suggest new strategies for improving this discrepancy.

[1]  E. Greenberg,et al.  The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. , 2007, Microbial pathogenesis.

[2]  M. Noble,et al.  Examination of the morphology of bacteria adhering to peritoneal dialysis catheters by scanning and transmission electron microscopy , 1983, Journal of clinical microbiology.

[3]  Thomas Bjarnsholt,et al.  Antibiotic resistance of bacterial biofilms. , 2010, International journal of antimicrobial agents.

[4]  M. Shirtliff,et al.  Human Leukocytes Adhere to, Penetrate, and Respond to Staphylococcus aureus Biofilms , 2002, Infection and Immunity.

[5]  Zhihong Xie,et al.  Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. , 2012, The Journal of infectious diseases.

[6]  H. Seifert,et al.  Clinical management of catheter-related infections. , 2002, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[7]  N. Høiby,et al.  Pathogenesis of cystic fibrosis , 1993, The Lancet.

[8]  M. Kühl,et al.  Functional and structural imaging of phototrophic microbial communities and symbioses , 2008 .

[9]  Y. Samstag,et al.  Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). , 2009, Molecular immunology.

[10]  T. Tolker-Nielsen,et al.  Distribution, Organization, and Ecology of Bacteria in Chronic Wounds , 2008, Journal of Clinical Microbiology.

[11]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.

[12]  D. McDougald,et al.  The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage , 2009, The ISME Journal.

[13]  T. Tolker-Nielsen,et al.  Quorum Sensing and Virulence of Pseudomonas aeruginosa during Lung Infection of Cystic Fibrosis Patients , 2010, PloS one.

[14]  S. Molin,et al.  Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm , 2011, PloS one.

[15]  Thomas Bjarnsholt,et al.  Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections. , 2010, FEMS immunology and medical microbiology.

[16]  Garth D Ehrlich,et al.  Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. , 2006, JAMA.

[17]  M. Givskov,et al.  The immune system vs. Pseudomonas aeruginosa biofilms. , 2010, FEMS immunology and medical microbiology.

[18]  U. Göbel,et al.  Evaluation of Peptide Nucleic Acid-Fluorescence In Situ Hybridization for Identification of Clinically Relevant Mycobacteria in Clinical Specimens and Tissue Sections , 2006, Journal of Clinical Microbiology.

[19]  J. Costerton,et al.  Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters , 1984, Journal of clinical microbiology.

[20]  B. Christensen,et al.  Molecular tools for study of biofilm physiology. , 1999, Methods in enzymology.

[21]  C. Sternberg,et al.  An in vitro model of bacterial infections in wounds and other soft tissues , 2010, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[22]  A. Kharazmi,et al.  Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1‐dominated cytokine response , 2002, Clinical and experimental immunology.

[23]  J. Rygaard,et al.  Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice , 1997, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[24]  N. Høiby Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. , 1977, Acta pathologica et microbiologica Scandinavica. Supplement.

[25]  R. Sampath,et al.  Adenoid Reservoir for Pathogenic Biofilm Bacteria , 2011, Journal of Clinical Microbiology.

[26]  D. Hassett,et al.  The Exopolysaccharide Alginate Protects Pseudomonas aeruginosa Biofilm Bacteria from IFN-γ-Mediated Macrophage Killing1 , 2005, The Journal of Immunology.

[27]  J. Costerton,et al.  Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm , 2002, Journal of bacteriology.

[28]  O. Geschke,et al.  Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies. , 2010, Lab on a chip.

[29]  Garth D Ehrlich,et al.  Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis , 2010, BMC Microbiology.

[30]  L. Pasteur Mémoire sur la fermentation acétique , 1864 .

[31]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[32]  L. Eberl,et al.  Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation , 2005 .

[33]  K. Krogfelt,et al.  Why chronic wounds will not heal: a novel hypothesis , 2008, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[34]  P. Diaz,et al.  Characterization of Mucosal Candida albicans Biofilms , 2009, PloS one.

[35]  J. Mattick,et al.  A re-examination of twitching motility in Pseudomonas aeruginosa. , 1999, Microbiology.

[36]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[37]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[38]  J. Costerton,et al.  Mode of growth of bacterial pathogens in chronic polymicrobial human osteomyelitis , 1985, Journal of Clinical Microbiology.

[39]  P. Stewart,et al.  Biofilms in chronic wounds , 2008, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[40]  S. Molin,et al.  Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. , 2005, Microbiology.

[41]  T. Tolker-Nielsen,et al.  Nonrandom Distribution of Pseudomonas aeruginosa and Staphylococcus aureus in Chronic Wounds , 2009, Journal of Clinical Microbiology.

[42]  R. Gibson,et al.  Pathophysiology and management of pulmonary infections in cystic fibrosis. , 2003, American journal of respiratory and critical care medicine.

[43]  Garth D Ehrlich,et al.  Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. , 2002, JAMA.

[44]  J. Schaber,et al.  Pseudomonas aeruginosa Forms Biofilms in Acute Infection Independent of Cell-to-Cell Signaling , 2006, Infection and Immunity.

[45]  H. Harmsen,et al.  Fluorescent in situ hybridization with specific DNA probes offers adequate detection of Enterococcus faecalis and Enterococcus faecium in clinical samples. , 2005, Journal of medical microbiology.

[46]  J. D. Cascajosa,et al.  Demonstration of Bacterial Biofilms in Culture-Negative Silicone Stent and Jones Tube , 2011 .

[47]  C. Shuler,et al.  Microbial biofilms in osteomyelitis of the jaw and osteonecrosis of the jaw secondary to bisphosphonate therapy. , 2009, Journal of the American Dental Association.

[48]  F. Stapleton,et al.  Pseudomonas keratitis associated with biofilm formation on a disposable soft contact lens. , 1995, The British journal of ophthalmology.

[49]  S. Molin,et al.  Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. , 2004, Journal of medical microbiology.

[50]  I. Klimant,et al.  Ultrabright planar optodes for luminescence life-time based microscopic imaging of O₂ dynamics in biofilms. , 2011, Journal of microbiological methods.

[51]  M. Schluchter,et al.  Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. , 2006, American journal of respiratory and critical care medicine.

[52]  Karin Sauer,et al.  The genomics and proteomics of biofilm formation , 2003, Genome Biology.

[53]  A. Jesaitis,et al.  Compromised Host Defense on Pseudomonas aeruginosa Biofilms: Characterization of Neutrophil and Biofilm Interactions 1 , 2003, The Journal of Immunology.

[54]  M. Kühl,et al.  Combined Imaging of Bacteria and Oxygen in Biofilms , 2007, Applied and Environmental Microbiology.

[55]  M. Parsek,et al.  Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. , 2009, Microbiology.

[56]  H. Stender,et al.  PNA for rapid microbiology. , 2002, Journal of microbiological methods.

[57]  A. Gristina,et al.  Adherent bacterial colonization in the pathogenesis of osteomyelitis , 2007 .

[58]  S. Kjelleberg,et al.  Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. , 2007, Microbiology.

[59]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[60]  J W Costerton,et al.  How bacteria stick. , 1978, Scientific American.

[61]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[62]  S. Molin,et al.  Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host–pathogen interactions in cystic fibrosis , 2009, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[63]  P. Stewart,et al.  Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin , 2000, Antimicrobial Agents and Chemotherapy.

[64]  Lindsey A. Lorenz,et al.  A method for growing a biofilm under low shear at the air–liquid interface using the drip flow biofilm reactor , 2009, Nature Protocols.

[65]  A. Buret,et al.  An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. , 1991, Journal of biomedical materials research.

[66]  Alan D. Lopez,et al.  Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study , 1997, The Lancet.

[67]  J. Costerton,et al.  Demonstration of Bacterial Biofilms in Culture-Negative Silicone Stent and Jones Tube , 2010, Ophthalmic plastic and reconstructive surgery.

[68]  T. Tolker-Nielsen,et al.  Detection of Bacteria by Fluorescence in Situ Hybridization in Culture‐Negative Soft Tissue Filler Lesions , 2009, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[69]  R. Lamont,et al.  Human Oral Bacterial Biofilms: Composition, Dynamics, and Pathogenesis , 2011 .

[70]  G. Ehrlich,et al.  Direct Demonstration of Staphylococcus Biofilm in an External Ventricular Drain in a Patient with a History of Recurrent Ventriculoperitoneal Shunt Failure , 2010, Pediatric Neurosurgery.

[71]  J. Costerton,et al.  Observations of fouling biofilm formation. , 1981, Canadian journal of microbiology.

[72]  Mirian Domenech,et al.  Biofilm Formation Avoids Complement Immunity and Phagocytosis of Streptococcus pneumoniae , 2013, Infection and Immunity.

[73]  T. Smith-Palmer,et al.  Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ , 2007, Journal of applied microbiology.

[74]  A. Henrici,et al.  Studies of Freshwater Bacteria , 1939, Journal of bacteriology.

[75]  J. Costerton,et al.  Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis , 1980, Infection and immunity.

[76]  P. Williams,et al.  Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. , 2007, Microbiology.

[77]  R. Baltimore,et al.  Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. , 1989, The American review of respiratory disease.

[78]  G. James,et al.  New methods for the detection of orthopedic and other biofilm infections. , 2011, FEMS immunology and medical microbiology.

[79]  Dehui Wang,et al.  Relationship between bacterial biofilm and clinical features of patients with chronic rhinosinusitis , 2011, European Archives of Oto-Rhino-Laryngology.

[80]  Richard C Boucher,et al.  Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. , 2002, The Journal of clinical investigation.

[81]  N. Høiby,et al.  Interactions between Polymorphonuclear Leukocytes and Pseudomonas aeruginosa Biofilms on Silicone Implants In Vivo , 2012, Infection and Immunity.

[82]  D. Fine,et al.  Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous β-Hexosaminidase Activity , 2003, Journal of bacteriology.

[83]  S. Molin,et al.  Novel Mouse Model of Chronic Pseudomonas aeruginosa Lung Infection Mimicking Cystic Fibrosis , 2005, Infection and Immunity.

[84]  G. Pier,et al.  Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes , 2009, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[85]  A. Henrici Studies of Freshwater Bacteria , 1933, Journal of bacteriology.

[86]  A. Kharazmi,et al.  Faster activation of polymorphonuclear neutrophils in resistant mice during early innate response to Pseudomonas aeruginosa lung infection , 2004, Clinical and experimental immunology.

[87]  S. Kjelleberg,et al.  Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[88]  W. Zimmerli,et al.  Implant-Associated Infection , 2011 .

[89]  M. Corey,et al.  Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. , 1984, The Journal of pediatrics.

[90]  J. Palmer,et al.  Evidence of Bacterial Biofilms in Human Chronic Sinusitis , 2004, ORL.

[91]  C. Davis,et al.  Detection of Staphylococcus aureus biofilm on tampons and menses components. , 2003, The Journal of infectious diseases.

[92]  M. Skov,et al.  Early rise of anti-pseudomonas antibodies and a mucoid phenotype of pseudomonas aeruginosa are risk factors for development of chronic lung infection--a case control study. , 2006, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[93]  Paul Stoodley,et al.  Viscoelasticity of Staphylococcus aureus Biofilms in Response to Fluid Shear Allows Resistance to Detachment and Facilitates Rolling Migration , 2005, Applied and Environmental Microbiology.

[94]  J. Costerton,et al.  Influence of Hydrodynamics and Cell Signaling on the Structure and Behavior of Pseudomonas aeruginosa Biofilms , 2002, Applied and Environmental Microbiology.

[95]  C. Keel,et al.  Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. , 2002, Microbiology.

[96]  Z Lewandowski,et al.  Biofilms, the customized microniche , 1994, Journal of bacteriology.

[97]  M. Parsek,et al.  Bacterial biofilms: an emerging link to disease pathogenesis. , 2003, Annual review of microbiology.

[98]  G. Hänsch,et al.  Host defence against Staphylococcus aureus biofilms by polymorphonuclear neutrophils: oxygen radical production but not phagocytosis depends on opsonisation with immunoglobulin G. , 2011, Immunobiology.

[99]  P. Reynolds,et al.  Mycobacterium abscessus Induces a Limited Pattern of Neutrophil Activation That Promotes Pathogen Survival , 2013, PloS one.

[100]  S. Molin,et al.  Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants , 2003, Molecular microbiology.

[101]  E. Schwarz,et al.  Quantitative mouse model of implant‐associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity , 2008, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[102]  M. Hamilton,et al.  Measuring antimicrobial effects on biofilm bacteria: from laboratory to field. , 1999, Methods in enzymology.

[103]  S. Lerakis,et al.  Staphylococcus aureus bacteremia and endocarditis: the Grady Memorial Hospital experience with methicillin-sensitive S aureus and methicillin-resistant S aureus bacteremia. , 2004, American heart journal.

[104]  G. Donelli,et al.  Microbial Biofilms , 2014, Methods in Molecular Biology.

[105]  Mark B. Wessman,et al.  Morphological evidence of biofilm formation in Greenlanders with chronic suppurative otitis media , 2009, European Archives of Oto-Rhino-Laryngology.

[106]  Hilary M. Lappin-Scott,et al.  Growth and Detachment of Cell Clusters from Mature Mixed-Species Biofilms , 2001, Applied and Environmental Microbiology.

[107]  N. Høiby,et al.  Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients , 2009, Pediatric pulmonology.

[108]  Martin Stotz,et al.  Lactate in cystic fibrosis sputum. , 2011, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[109]  U. Obst,et al.  Phagocytosis of Staphylococci Biofilms by Polymorphonuclear Neutrophils: S. aureus and S. epidermidis Differ with Regard to Their Susceptibility Towards the Host Defense , 2009, The International journal of artificial organs.

[110]  J. Costerton,et al.  A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. , 1982, Circulation.

[111]  H. Ceri,et al.  The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms , 1999, Journal of Clinical Microbiology.

[112]  T. Tolker-Nielsen,et al.  Insight into the microbial multicellular lifestyle via flow‐cell technology and confocal microscopy , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[113]  G. Shand,et al.  Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres , 1990, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[114]  A. Kharazmi,et al.  Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis , 2009, Thorax.