Decoding signalling networks by mass spectrometry-based proteomics

[1]  H. Schöler,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins* , 2020 .

[2]  Nikolaos Scarmeas,et al.  The good, bad, and ugly? , 2012, Neurology.

[3]  M. Mann,et al.  Super-SILAC mix for quantitative proteomics of human tumor tissue , 2010, Nature Methods.

[4]  M. Mann,et al.  Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. , 2010, Immunity.

[5]  Guo-Ping Zhao,et al.  Acetylation of Metabolic Enzymes Coordinates Carbon Source Utilization and Metabolic Flux , 2010, Science.

[6]  Yixue Li,et al.  Regulation of Cellular Metabolism by Protein Lysine Acetylation , 2010, Science.

[7]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[8]  J. Shabanowitz,et al.  Extensive Crosstalk Between O-GlcNAcylation and Phosphorylation Regulates Cytokinesis , 2010, Science Signaling.

[9]  Joshua E. Elias,et al.  Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics , 2010, Proteome Bioinformatics.

[10]  Gerard Cagney,et al.  An Overview of Label-Free Quantitation Methods in Proteomics by Mass Spectrometry , 2010, Proteome Bioinformatics.

[11]  Yi Zhang,et al.  A Robust Error Model for iTRAQ Quantification Reveals Divergent Signaling between Oncogenic FLT3 Mutants in Acute Myeloid Leukemia* , 2009, Molecular & Cellular Proteomics.

[12]  Tony Pawson,et al.  Cell-Specific Information Processing in Segregating Populations of Eph Receptor Ephrin–Expressing Cells , 2009, Science.

[13]  Ruedi Aebersold,et al.  Directed mass spectrometry: towards hypothesis-driven proteomics. , 2009, Current opinion in chemical biology.

[14]  Walter Kolch,et al.  Cell fate decisions are specified by the dynamic ERK interactome , 2009, Nature Cell Biology.

[15]  L. F. Waanders,et al.  Quantitative proteomic analysis of single pancreatic islets , 2009, Proceedings of the National Academy of Sciences.

[16]  M. Mann,et al.  Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. , 2009, Molecular cell.

[17]  Matthias Mann,et al.  A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed* , 2009, Molecular & Cellular Proteomics.

[18]  Jesper V Olsen,et al.  Global analysis of the yeast osmotic stress response by quantitative proteomics. , 2009, Molecular bioSystems.

[19]  Yingming Zhao,et al.  Modification‐specific proteomics: Strategies for characterization of post‐translational modifications using enrichment techniques , 2009, Proteomics.

[20]  J. Cox,et al.  Proteomics strategy for quantitative protein interaction profiling in cell extracts , 2009, Nature Methods.

[21]  S. Gygi,et al.  Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution , 2009, Science.

[22]  Blagoy Blagoev,et al.  Receptor tyrosine kinase signaling: a view from quantitative proteomics. , 2009, Molecular bioSystems.

[23]  Ishtiaq Rehman,et al.  iTRAQ underestimation in simple and complex mixtures: "the good, the bad and the ugly". , 2009, Journal of proteome research.

[24]  E. Nigg,et al.  Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. , 2009, Journal of proteome research.

[25]  A. Sorkin,et al.  Endocytosis and signalling: intertwining molecular networks , 2009, Nature Reviews Molecular Cell Biology.

[26]  Lukas N. Mueller,et al.  Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics , 2009, Cell.

[27]  Jimmy K. Eng,et al.  Quantitative Phosphoproteomic Analysis of T Cell Receptor Signaling Reveals System-Wide Modulation of Protein-Protein Interactions , 2009, Science Signaling.

[28]  Ruedi Aebersold,et al.  Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. , 2009, Genes & development.

[29]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[30]  C. Mummery,et al.  Phosphorylation dynamics during early differentiation of human embryonic stem cells. , 2009, Cell stem cell.

[31]  L. Brill,et al.  Phosphoproteomic analysis of human embryonic stem cells. , 2009, Cell stem cell.

[32]  M. Mann,et al.  Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics , 2009, Molecular & Cellular Proteomics.

[33]  Tony Pawson,et al.  Comparative Analysis Reveals Conserved Protein Phosphorylation Networks Implicated in Multiple Diseases , 2009, Science Signaling.

[34]  R. Aebersold,et al.  Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans , 2009, Nature.

[35]  Matthias Mann,et al.  Bioinformatics analysis of mass spectrometry‐based proteomics data sets , 2009, FEBS letters.

[36]  J. Griffiths,et al.  A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS) , 2009, Nature Protocols.

[37]  G. Barton,et al.  System-Wide Changes to SUMO Modifications in Response to Heat Shock , 2009, Science Signaling.

[38]  Florian Gnad,et al.  Systems-wide Analysis of a Phosphatase Knock-down by Quantitative Proteomics and Phosphoproteomics , 2009, Molecular & Cellular Proteomics.

[39]  N. Kitteringham,et al.  Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. , 2009, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[40]  B. Blagoev,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Quantitative Comparison of the Membrane Proteomes of Self-renewing and Differentiating Human Embryonic Stem Cells*S , 2009, Molecular & Cellular Proteomics.

[41]  Matthias Mann,et al.  Host cell interactome of tyrosine-phosphorylated bacterial proteins. , 2009, Cell host & microbe.

[42]  K. Resing,et al.  Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. , 2009, Molecular cell.

[43]  M. Mann,et al.  Global and site-specific quantitative phosphoproteomics: principles and applications. , 2009, Annual review of pharmacology and toxicology.

[44]  M. Mann,et al.  The Phosphotyrosine Interactome of the Insulin Receptor Family and Its Substrates IRS-1 and IRS-2*S , 2009, Molecular & Cellular Proteomics.

[45]  J. Thomson,et al.  Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry , 2009, Proceedings of the National Academy of Sciences.

[46]  R. Aebersold,et al.  An integrated workflow for charting the human interaction proteome: insights into the PP2A system , 2009, Molecular systems biology.

[47]  Brian Raught,et al.  A PP2A Phosphatase High Density Interaction Network Identifies a Novel Striatin-interacting Phosphatase and Kinase Complex Linked to the Cerebral Cavernous Malformation 3 (CCM3) Protein*S , 2009, Molecular & Cellular Proteomics.

[48]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[49]  Reinout Raijmakers,et al.  Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics , 2009, Nature Protocols.

[50]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[51]  M. Mann,et al.  Precision proteomics: The case for high resolution and high mass accuracy , 2008, Proceedings of the National Academy of Sciences.

[52]  Forest M White,et al.  Quantitative phosphoproteomics by mass spectrometry: Past, present, and future , 2008, Proteomics.

[53]  M. Mann,et al.  Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors , 2008, Proteomics.

[54]  M. Mann,et al.  Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. , 2008, Journal of proteome research.

[55]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[56]  P. Bork,et al.  Linear Motif Atlas for Phosphorylation-Dependent Signaling , 2008, Science Signaling.

[57]  M. Mann,et al.  Investigation of Protein-tyrosine Phosphatase 1B Function by Quantitative Proteomics*S , 2008, Molecular & Cellular Proteomics.

[58]  Akhilesh Pandey,et al.  Identification of c-Src Tyrosine Kinase Substrates Using Mass Spectrometry and Peptide Microarrays , 2008, Journal of proteome research.

[59]  M. Mann,et al.  Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. , 2008, Molecular cell.

[60]  S. Elledge,et al.  A quantitative atlas of mitotic phosphorylation , 2008, Proceedings of the National Academy of Sciences.

[61]  Matthias Mann,et al.  High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. , 2008, Current opinion in biotechnology.

[62]  M. Mann,et al.  SILAC Mouse for Quantitative Proteomics Uncovers Kindlin-3 as an Essential Factor for Red Blood Cell Function , 2008, Cell.

[63]  M. Mann,et al.  Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry , 2008, Nature Methods.

[64]  Hanno Steen,et al.  Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: A quantitative proteomic analysis , 2008, Proceedings of the National Academy of Sciences.

[65]  M. Mann,et al.  Dissection of the insulin signaling pathway via quantitative phosphoproteomics , 2008, Proceedings of the National Academy of Sciences.

[66]  M. Mann,et al.  Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. , 2008, Journal of proteome research.

[67]  Steven P Gygi,et al.  Signaling networks assembled by oncogenic EGFR and c-Met , 2008, Proceedings of the National Academy of Sciences.

[68]  Lukas N. Mueller,et al.  An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. , 2008, Journal of proteome research.

[69]  M. Mann,et al.  In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy*S , 2008, Molecular & Cellular Proteomics.

[70]  Mindy I. Davis,et al.  A quantitative analysis of kinase inhibitor selectivity , 2008, Nature Biotechnology.

[71]  T. Hunter The age of crosstalk: phosphorylation, ubiquitination, and beyond. , 2007, Molecular cell.

[72]  Laura A. Sullivan,et al.  Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer , 2007, Cell.

[73]  S. Gygi,et al.  Profiling of UV-induced ATM/ATR signaling pathways , 2007, Proceedings of the National Academy of Sciences.

[74]  A. Lamond,et al.  Toward a High-Resolution View of Nuclear Dynamics , 2007, Science.

[75]  M. Mann,et al.  PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites , 2007, Genome Biology.

[76]  K. Resing,et al.  Mapping protein post-translational modifications with mass spectrometry , 2007, Nature Methods.

[77]  Bernhard Kuster,et al.  Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors , 2007, Nature Biotechnology.

[78]  M. Mann,et al.  Higher-energy C-trap dissociation for peptide modification analysis , 2007, Nature Methods.

[79]  R. Beynon,et al.  Absolute Multiplexed Quantitative Analysis of Protein Expression during Muscle Development Using QconCAT* , 2007, Molecular & Cellular Proteomics.

[80]  R. Aebersold,et al.  Analysis of protein complexes using mass spectrometry , 2007, Nature Reviews Molecular Cell Biology.

[81]  P. Bork,et al.  Systematic Discovery of In Vivo Phosphorylation Networks , 2007, Cell.

[82]  Marcus B Smolka,et al.  Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases , 2007, Proceedings of the National Academy of Sciences.

[83]  B. A. Ballif,et al.  ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage , 2007, Science.

[84]  Patrick G. A. Pedrioli,et al.  A high-quality catalog of the Drosophila melanogaster proteome , 2007, Nature Biotechnology.

[85]  D. Lauffenburger,et al.  Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks , 2007, Proceedings of the National Academy of Sciences.

[86]  M. Mann,et al.  On the Proper Use of Mass Accuracy in Proteomics* , 2007, Molecular & Cellular Proteomics.

[87]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[88]  Forest M. White,et al.  Modeling HER2 Effects on Cell Behavior from Mass Spectrometry Phosphotyrosine Data , 2006, PLoS Comput. Biol..

[89]  Daniel B. Martin,et al.  Computational prediction of proteotypic peptides for quantitative proteomics , 2007, Nature Biotechnology.

[90]  Matthias Mann,et al.  Innovations: Functional and quantitative proteomics using SILAC , 2006, Nature Reviews Molecular Cell Biology.

[91]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[92]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[93]  N. Grishin,et al.  Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. , 2006, Molecular cell.

[94]  F. White,et al.  Temporal Dynamics of Tyrosine Phosphorylation in Insulin Signaling , 2006, Diabetes.

[95]  Brian Raught,et al.  Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software , 2006, Nature Methods.

[96]  T. Pawson,et al.  Reading protein modifications with interaction domains , 2006, Nature Reviews Molecular Cell Biology.

[97]  O. Jensen Interpreting the protein language using proteomics , 2006, Nature Reviews Molecular Cell Biology.

[98]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[99]  A. Pandey,et al.  Chemical Rescue of a Mutant Enzyme in Living Cells , 2006, Science.

[100]  A. Makarov,et al.  Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. , 2006, Analytical chemistry.

[101]  M. Mann,et al.  Parts per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-trap*S , 2005, Molecular & Cellular Proteomics.

[102]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[103]  Blagoy Blagoev,et al.  Mechanism of Divergent Growth Factor Effects in Mesenchymal Stem Cell Differentiation , 2005, Science.

[104]  M. Mann,et al.  Phosphotyrosine interactome of the ErbB-receptor kinase family , 2005, Molecular systems biology.

[105]  M. Mann,et al.  Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway*S , 2005, Molecular & Cellular Proteomics.

[106]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[107]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[108]  M. Mann,et al.  Identifying and quantifying in vivo methylation sites by heavy methyl SILAC , 2004, Nature Methods.

[109]  M. Mann,et al.  The abc's (and xyz's) of peptide sequencing , 2004, Nature Reviews Molecular Cell Biology.

[110]  M. Mann,et al.  Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics , 2004, Nature Biotechnology.

[111]  J. Shabanowitz,et al.  A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. , 2004, Analytical chemistry.

[112]  Scott A. Busby,et al.  Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. , 2004, Journal of proteome research.

[113]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[114]  Shu-Hui Chen,et al.  Stable-isotope dimethyl labeling for quantitative proteomics. , 2003, Analytical chemistry.

[115]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[116]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[117]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[118]  Blagoy Blagoev,et al.  A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling , 2003, Nature Biotechnology.

[119]  P. Manow ‚The Good, the Bad, and the Ugly‘ , 2002 .

[120]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[121]  J. Shabanowitz,et al.  Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae , 2002, Nature Biotechnology.

[122]  T. Hunter,et al.  Oncogenic kinase signalling , 2001, Nature.

[123]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[124]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[125]  F. McLafferty,et al.  Electron capture dissociation for structural characterization of multiply charged protein cations. , 2000, Analytical chemistry.

[126]  J. Yates,et al.  Direct analysis of protein complexes using mass spectrometry , 1999, Nature Biotechnology.

[127]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[128]  Matthias Mann,et al.  FLICE, A Novel FADD-Homologous ICE/CED-3–like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex , 1996, Cell.

[129]  R. Cotter,et al.  Mass Spectrometry , 1992, Bio/Technology.