Spectral networks and stability conditions for Fukaya categories with coefficients

Given a holomorphic family of Bridgeland stability conditions over a surface, we define a notion of spectral network which is an object in a Fukaya category of the surface with coefficients in a triangulated DG-category. These spectral networks are analogs of special Lagrangian submanifolds, combining a graph with additional algebraic data, and conjecturally correspond to semistable objects of a suitable stability condition on the Fukaya category with coefficients. They are closely related to the spectral networks of Gaiotto–Moore–Neitzke. One novelty of our approach is that we establish a general uniqueness results for spectral network representatives. We also verify the conjecture in the case when the surface is disk with six marked points on the boundary and the coefficients category is the derived category of representations of an A2 quiver. This example is related, via homological mirror symmetry, to the stacky quotient of an elliptic curve by the cyclic group of order six.

[1]  L. Positselski Nonhomogeneous quadratic duality and curvature , 2014, 1411.1982.

[2]  Richard P. Thomas,et al.  Moment maps, monodromy and mirror manifolds , 2001, math/0104196.

[3]  Goncalo Tabuada Théorie homotopique des DG-catégories , 2007, 0710.4303.

[4]  Y. Soibelman,et al.  On 2d-4d motivic wall-crossing formulas , 2017, 1711.03695.

[5]  M. Kapranov,et al.  Perverse Schobers , 2014, 1411.2772.

[6]  B. Keller A-infinity algebras, modules and functor categories , 2005, math/0510508.

[7]  I. Smith,et al.  Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.

[8]  Ivan Smith,et al.  Floer Theory of Higher Rank Quiver 3-folds , 2020, Communications in Mathematical Physics.

[9]  Pietro Longhi,et al.  ADE spectral networks , 2016, 1601.02633.

[10]  K. Ueda Homological Mirror Symmetry and Simple Elliptic Singularities , 2006, math/0604361.

[11]  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[12]  Y. Oh,et al.  Lagrangian intersection floer theory : anomaly and obstruction , 2009 .

[13]  A. Elagin Cohomological descent theory for a morphism of stacks and for equivariant derived categories , 2011, 1103.3135.

[14]  Pietro Longhi,et al.  Spectral Networks with Spin , 2014, 1408.0207.

[15]  A. Harder,et al.  Perverse sheaves of categories and some applications , 2017, Advances in Mathematics.

[16]  T. Bridgeland Stability conditions and Kleinian singularities , 2005, math/0508257.

[17]  Pietro Longhi,et al.  BPS graphs: from spectral networks to BPS quivers , 2017, Journal of High Energy Physics.

[18]  A. Neitzke,et al.  Spectral Networks and Fenchel–Nielsen Coordinates , 2013, 1312.2979.

[19]  M. Kontsevich,et al.  Notes on A∞-Algebras, A∞-Categories and Non-Commutative Geometry , 2006, math/0606241.

[20]  Paul Seidel,et al.  Fukaya Categories and Picard-Lefschetz Theory , 2008 .

[21]  Pietro Longhi Wall Crossing Invariants from Spectral Networks , 2016, 1611.00150.

[22]  Sefi Ladkani,et al.  On derived equivalences of lines, rectangles and triangles , 2009, J. Lond. Math. Soc..

[23]  R. Anno,et al.  Spherical DG-functors , 2013, 1309.5035.

[24]  G. Moore,et al.  Spectral Networks , 2012, 1204.4824.

[25]  M. Kapranov,et al.  Perverse schobers and birational geometry , 2018, 1801.08286.

[26]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[27]  M. Kapranov,et al.  Triangulated surfaces in triangulated categories , 2013, 1306.2545.

[28]  Stability conditions and the braid group , 2002, math/0212214.

[29]  D. Joyce Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow , 2014, 1401.4949.

[30]  Richard P. Thomas,et al.  Special Lagrangians, stable bundles and mean curvature flow , 2001, math/0104197.

[31]  Maxim Kontsevich,et al.  Homological Algebra of Mirror Symmetry , 1994, alg-geom/9411018.

[32]  Z. Leszczyński On the representation type of tensor product algebras , 1994 .

[33]  H. Lenzing,et al.  A class of weighted projective curves arising in representation theory of finite dimensional algebras , 1987 .

[34]  A. Goncharov Ideal Webs, Moduli Spaces of Local Systems, and 3d Calabi–Yau Categories , 2016, 1607.05228.

[35]  Fabian Haiden 3-d Calabi--Yau categories for Teichm\"uller theory , 2021 .

[36]  B. Keller Calabi–Yau triangulated categories , 2008 .

[37]  F. Haiden Legendrian skein algebras and Hall algebras , 2019, Mathematische Annalen.

[38]  G. Moore,et al.  Spectral Networks and Snakes , 2012, 1209.0866.

[39]  M. Kapranov,et al.  Perverse schobers and the Algebra of the Infrared , 2020, 2011.00845.

[40]  W. Donovan Perverse schobers on Riemann surfaces: constructions and examples , 2018, European Journal of Mathematics.

[41]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[42]  Maxime Gabella Quantum Holonomies from Spectral Networks and Framed BPS States , 2016, 1603.05258.

[43]  Paul Seidel,et al.  Graded Lagrangian submanifolds , 1999, math/9903049.

[44]  Y. Oh,et al.  Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I , 2010 .

[45]  Pietro Longhi,et al.  ADE spectral networks and decoupling limits of surface defects , 2016, Journal of High Energy Physics.

[46]  Joseph Hirsh,et al.  Curved Koszul duality theory , 2010, 1008.5368.

[47]  H. Williams Toda Systems, Cluster Characters, and Spectral Networks , 2014, 1411.3692.

[48]  Emanuele Macrì,et al.  Inducing stability conditions , 2007, 0705.3752.

[49]  On triangulated orbit categories , 2005, math/0503240.

[50]  Merlin Christ Ginzburg algebras of triangulated surfaces and perverse schobers , 2021 .