$$H^1$$ H 1 Scattering for Mass-Subcritical NLS with Short-Range Nonlinearity and Initial Data in

We consider short-range mass-subcritical nonlinear Schr\"odinger equations and we show that the corresponding solutions with initial data in $\Sigma$ scatter in $H^1$. Hence we up-grade the classical scattering result proved by Yajima and Tsutsumifrom $L^2$ to $H^1$.We also provide some partial results concerning the scattering of the first order moments, as well as a short proof via lens transform of a classical result due to Tsutsumi and Cazenave-Weissler on the scattering in $\Sigma$.

[1]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[2]  Almost sure scattering for the one dimensional nonlinear Schr\"odinger equation , 2020, 2012.13571.

[3]  Luis Vega,et al.  Bilinear virial identities and applications , 2007, 0712.4076.

[4]  T. Cazenave,et al.  Rapidly decaying solutions of the nonlinear Schrödinger equation , 1992 .

[5]  R. Killip,et al.  Large data mass-subcritical NLS: critical weighted bounds imply scattering , 2016, 1606.01512.

[6]  On the decay of solutions to a class of defocusing NLS , 2008, 0811.1849.

[7]  B. Dodson Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d = 1 , 2010, 1010.0040.

[8]  J. Dollard Errata to "Quantum-mechanical scattering theory for short-range and coulomb interactions" , 1971 .

[9]  Pascal B'egout CONVERGENCE TO SCATTERING STATES IN THE NONLINEAR SCHRÖDINGER EQUATION , 2001, 1207.2034.

[10]  K. Nakanishi Energy Scattering for Nonlinear Klein–Gordon and Schrödinger Equations in Spatial Dimensions 1 and 2☆ , 1999 .

[11]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[12]  B. Dodson Global well-posedness and scattering for the defocusing, $L^{2}$-critical nonlinear Schrödinger equation when $d =3$ , 2009, 0912.2467.

[13]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy , 1981 .

[14]  N. Tzvetkov,et al.  On the asymptotic behavior of high order moments for a family of Schrödinger equations , 2020, 2004.05850.

[15]  Global well-posedness and scattering for the energy-critical nonlinear Schr\"odinger equation in R^3 , 2004, math/0402129.

[16]  J. Bourgain Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case , 1999 .

[17]  B. Dodson Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d = 1 , 2016 .

[18]  N. Tzvetkov,et al.  Long time dynamics for the one dimensional non linear Schrödinger equation , 2010, 1002.4054.

[19]  J. Ginibre,et al.  Scattering theory in the energy space for a class of nonlinear Schrödinger equations , 1985 .

[20]  Jacqueline E. Barab,et al.  Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation , 1984 .

[21]  M. Grillakis,et al.  Tensor products and correlation estimates with applications to nonlinear Schrödinger equations , 2008, 0807.0871.

[22]  R. Killip,et al.  The radial mass-subcritical NLS in negative order Sobolev spaces , 2018, Discrete & Continuous Dynamical Systems - A.

[23]  M. Visan The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions , 2005, math/0508298.

[24]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[25]  R. Carles Rotating points for the conformal NLS scattering operator , 2008, 0811.3121.

[26]  Kenji Yajima,et al.  The asymptotic behavior of nonlinear Schrdinger equations , 1984 .