Avian hematopoietic cell culture: in vitro model systems to study oncogenic transformation of hematopoietic cells.

[1]  H. Beug,et al.  Transformation of chicken bone marrow cells by the v-ski oncogene. , 1993, Oncogene.

[2]  W. Paul,et al.  Hematopoietin sub-family classification based on size, gene organization and sequence homology , 1993, Current Biology.

[3]  H. Beug,et al.  Self-renewal and differentiation of normal avian erythroid progenitor cells: Regulatory roles of the TGFαc-ErbB and SCFc-Kit receptors , 1993, Cell.

[4]  Sasaki Erika,et al.  Cloning and expression of the chicken c-kit proto-oncogene. , 1993 .

[5]  J. D. Engel,et al.  Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. , 1993, Genes & development.

[6]  M. Zenke,et al.  Unliganded T3R, but not its oncogenic variant, v‐erbA, suppresses RAR‐dependent transactivation by titrating out RXR. , 1993, The EMBO journal.

[7]  H. Beug,et al.  The estrogen receptor cooperates with the TGF alpha receptor (c‐erbB) in regulation of chicken erythroid progenitor self‐renewal. , 1993, The EMBO journal.

[8]  M. Zenke,et al.  Hormone‐regulated v‐rel estrogen receptor fusion protein: reversible induction of cell transformation and cellular gene expression. , 1992, The EMBO journal.

[9]  H. Beug,et al.  The v-ski oncogene cooperates with the v-sea oncogene in erythroid transformation by blocking erythroid differentiation. , 1992, Oncogene.

[10]  B. Vennström,et al.  Transcriptional repression of band 3 and CAII in v‐erbA transformed erythroblasts accounts for an important part of the leukaemic phenotype. , 1992, The EMBO journal.

[11]  T. Graf,et al.  Chicken “erythroid” cells transformed by the Gag-Myb-Ets-encoding E26 leukemia virus are multipotent , 1992, Cell.

[12]  H. Beug,et al.  The v-erbA oncogene requires cooperation with tyrosine kinases to arrest erythroid differentiation induced by ligand-activated endogenous c-erbA and retinoic acid receptor. , 1992, Oncogene.

[13]  H. Beug,et al.  Expression of v-rel in a replication competent virus: transformation and biochemical characterization. , 1991, Oncogene.

[14]  H. Kung,et al.  EGF-R as a hemopoietic growth factor receptor: The c-erbB product is present in chicken erythrocytic progenitors and controls their self-renewal , 1991, Cell.

[15]  Christopher T Denny,et al.  Leukemia and the disruption of normal hematopoiesis , 1991, Cell.

[16]  H. Beug,et al.  Phosphorylation of the v-erbA protein is required for its function as an oncogene. , 1990, Genes & development.

[17]  H. Beug,et al.  v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA , 1990, Cell.

[18]  T. Graf,et al.  Co‐operation between viral oncogenes in avian erythroid and myeloid leukaemia , 1989, European journal of clinical investigation.

[19]  D. Metcalf,et al.  The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells , 1989, Nature.

[20]  S. Ness,et al.  Molecular cloning of the chicken myelomonocytic growth factor (cMGF) reveals relationship to interleukin 6 and granulocyte colony stimulating factor. , 1989, The EMBO journal.

[21]  A. Ullrich,et al.  Truncation of the human EGF receptor leads to differential transforming potentials in primary avian fibroblasts and erythroblasts. , 1988, The EMBO journal.

[22]  H. Beug,et al.  Abnormal glycosylation of the env-sea oncogene product inhibits its proteolytic cleavage and blocks its transforming ability. , 1988, Oncogene.

[23]  J. D. Engel,et al.  Temperature-sensitive v-sea transformed erythroblasts: a model system to study gene expression during erythroid differentiation. , 1988, Genes & development.

[24]  J. D. Engel,et al.  v-erbA specifically suppresses transcription of the avian erythrocyte anion transporter (Band 3) gene , 1988, Cell.

[25]  H. Okayama,et al.  High-efficiency transformation of mammalian cells by plasmid DNA. , 1987, Molecular and cellular biology.

[26]  T. Graf,et al.  Reversibility of differentiation and proliferative capacity in avian myelomonocytic cells transformed by tsE26 leukemia virus. , 1987, Genes & development.

[27]  H. Beug,et al.  Control of erythroid differentiation: Possible role of the transferrin cycle , 1986, Cell.

[28]  H. Kung,et al.  Rous-associated virus 1-induced erythroleukemic cells exhibit a weakly transformed phenotype in vitro and release c-erbB-containing retroviruses unable to transform fibroblasts , 1986, Journal of virology.

[29]  T. Graf,et al.  Ts mutants of E26 leukemia virus allow transformed myeloblasts, but not erythroblasts or fibroblasts to differentiate at the nonpermissive temperature , 1984, Cell.

[30]  T. Graf,et al.  Purification and characterization of cMGF, a novel chicken myelomonocytic growth factor. , 1984, The EMBO journal.

[31]  T. Graf,et al.  Role of the v-erbA and v-erbB oncogenes of avian erythroblastosis virus in erythroid cell transformation , 1983, Cell.

[32]  T. Graf,et al.  Transforming capacities of avian erythroblastosis virus mutants deleted in the erbA or erbB oncogenes , 1983, Cell.

[33]  T. Graf,et al.  Transformation of both erythroid and myeloid cells by E26, an avian leukemia virus that contains the myb gene , 1982, Cell.

[34]  T. Graf,et al.  Myeloblasts transformed by the avian acute leukemia virus E26 are hormone‐dependent for growth and for the expression of a putative myb‐containing protein, p135 E26. , 1982, The EMBO journal.

[35]  H. Zentgraf,et al.  Hormone-dependent terminal differentiation in vitro of chicken erythroleukemia cells transformed by ts mutants of avian erythroblastosis virus , 1982, Cell.

[36]  T. Graf,et al.  Hematopoietic cells transformed in vitro by REVT avian reticuloendotheliosis virus express characteristics of very immature lymphoid cells. , 1981, Virology.

[37]  T. Graf,et al.  Characterization of the hematopoietic target cells of AEV, MC29 and AMV avian leukemia viruses. , 1981, Experimental cell research.

[38]  J. Till,et al.  Hemopoietic stem cell differentiation. , 1980, Biochimica et biophysica acta.

[39]  T. Graf,et al.  Avian leukemia viruses: interaction with their target cells in vivo and in vitro. , 1978, Biochimica et biophysica acta.

[40]  T. Graf,et al.  Temperature-sensitive mutant of avian erythroblastosis virus suggests a block of differentiation as mechanism of leukaemogenesis , 1978, Nature.

[41]  T. Graf,et al.  Transformation parameters in chicken fibroblasts transformed by AEV and MC29 avian leukemia viruses , 1978, Cell.

[42]  T. Graf,et al.  Isolation of clonal strains of chicken embryo fibroblasts. , 1977, Experimental cell research.

[43]  T. Graf Two types of target cells for transformation with avian myelocytomatosis virus. , 1973, Virology.

[44]  A. van der Eb,et al.  A new technique for the assay of infectivity of human adenovirus 5 DNA. , 1973, Virology.

[45]  T. Graf,et al.  A functional Ets DNA-binding domain is required to maintain multipotency of hematopoietic progenitors transformed by Myb-Ets. , 1994, Genes & development.

[46]  P. Sharp Nuclear processes and oncogenes , 1992 .

[47]  M. Greaves,et al.  Modern Trends in Human Leukemia VII , 1987, Haematology and Blood Transfusion / Hämatologie und Bluttransfusion.

[48]  E. Hochuli,et al.  New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. , 1987, Journal of chromatography.

[49]  T. Graf,et al.  Erythroblast cell lines transformed by a temperature‐sensitive mutant of avian erythroblastosis virus: A model system to study erythroid differentiation in vitro , 1982, Journal of cellular physiology. Supplement.