On Generalized Jacobi-Bernstein Basis Transformation: Application of Multidegree Reduction of Bézier Curves and Surfaces

This paper formulates a new explicit expression for the generalized Jacobi polynomials (GJPs) in terms of Bernstein basis. We also establish and prove the basis transformation between the GJPs basis and Bernstein basis and vice versa. This transformation embeds the perfect least-square performance of the GJPs with the geometrical insight of the Bernstein form. Moreover, the GJPs with indexes corresponding to the number of endpoint constraints are the natural basis functions for least-square approximation of Bezier curves and surfaces. Application to multidegree reduction (MDR) of Bezier curves and surfaces in computer aided geometric design (CAGD) is given.

[1]  Ben-yu Guo,et al.  A collocation method for generalized nonlinear Klein-Gordon equation , 2014, Adv. Comput. Math..

[2]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[3]  Khosrow Maleknejad,et al.  Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations , 2012 .

[4]  Dumitru Baleanu,et al.  A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations , 2015, J. Comput. Phys..

[5]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[6]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[7]  Abedallah Rababah,et al.  Jacobi-Bernstein Basis Transformation , 2004 .

[8]  Dambaru Bhatta,et al.  Use of modified Bernstein polynomials to solve KdV-Burgers equation numerically , 2008, Appl. Math. Comput..

[9]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[10]  Eid H. Doha,et al.  Integrals of Bernstein polynomials: An application for the solution of high even-order differential equations , 2011, Appl. Math. Lett..

[11]  Young Joon Ahn,et al.  Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approximation of Bézier coefficients , 2004, Comput. Aided Geom. Des..

[12]  Byung-Gook Lee,et al.  Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction , 2002, Comput. Aided Geom. Des..

[13]  J. Rice The approximation of functions , 1964 .

[14]  Hasik Sunwoo,et al.  Matrix representation for multi-degree reduction of Be'zier curves , 2005, Comput. Aided Geom. Des..

[15]  Bernard R Gelbaum,et al.  Modern real and complex analysis , 1992 .

[16]  Muhammad I. Bhatti,et al.  Numerical solution of KdV equation using modified Bernstein polynomials , 2006, Appl. Math. Comput..

[17]  Jie Shen,et al.  Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials , 2006, J. Sci. Comput..

[18]  Pawel Wozny,et al.  Multi-degree reduction of Bézier curves with constraints, using dual Bernstein basis polynomials , 2009, Comput. Aided Geom. Des..

[19]  Jean-Claude Paul,et al.  Multi-degree reduction of Bézier curves using reparameterization , 2011, Comput. Aided Des..

[20]  Rida T. Farouki,et al.  Legendre-Bernstein basis transformations , 2000 .

[21]  Eid H. Doha,et al.  Jacobi-Gauss-Lobatto collocation method for the numerical solution of l+l nonlinear Schrödinger equations , 2014, J. Comput. Phys..

[22]  A. Rababah Transformation of Chebyshev–Bernstein Polynomial Basis , 2003 .

[23]  Lian Zhou,et al.  Constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials , 2009, Comput. Aided Geom. Des..

[24]  B. Guo Some progress in spectral methods , 2013 .

[25]  Rajesh K. Pandey,et al.  Solution of Lane–Emden type equations using Bernstein operational matrix of differentiation , 2012 .

[26]  Khosrow Maleknejad,et al.  A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations , 2012, Math. Comput. Model..

[27]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear age-structured population models by using the operational matrices of Bernstein polynomials , 2012 .

[28]  Mehdi Dehghan,et al.  The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass , 2011, J. Comput. Appl. Math..

[29]  Bert Jüttler,et al.  The dual basis functions for the Bernstein polynomials , 1998, Adv. Comput. Math..

[30]  Mehmet Sezer,et al.  A rational approximation based on Bernstein polynomials for high order initial and boundary values problems , 2011, Appl. Math. Comput..

[31]  Ben-yu Guo,et al.  Generalized Jacobi rational spectral method on the half line , 2012, Adv. Comput. Math..

[32]  Ali H. Bhrawy,et al.  On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations , 2011 .

[33]  E. Cheney Introduction to approximation theory , 1966 .

[34]  Guozhao Wang,et al.  Application of Chebyshev II-Bernstein basis transformations to degree reduction of Bézier curves , 2008 .

[35]  Ben-yu Guo,et al.  Generalized Jacobi Rational Spectral Method and Its Applications , 2010, J. Sci. Comput..

[36]  Guodong Chen,et al.  Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity , 2002, Comput. Aided Geom. Des..

[37]  Dumitru Baleanu,et al.  A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations , 2014 .

[38]  A. H. Bhrawy,et al.  A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients , 2013, Appl. Math. Comput..