DNA-directed artificial light-harvesting antenna.

Designing and constructing multichromophoric, artificial light-harvesting antennas with controlled interchromophore distances, orientations, and defined donor-acceptor ratios to facilitate efficient unidirectional energy transfer is extremely challenging. Here, we demonstrate the assembly of a series of structurally well-defined artificial light-harvesting triads based on the principles of structural DNA nanotechnology. DNA nanotechnology offers addressable scaffolds for the organization of various functional molecules with nanometer scale spatial resolution. The triads are organized by a self-assembled seven-helix DNA bundle (7HB) into cyclic arrays of three distinct chromophores, reminiscent of natural photosynthetic systems. The scaffold accommodates a primary donor array (Py), secondary donor array (Cy3) and an acceptor (AF) with defined interchromophore distances. Steady-state fluorescence analyses of the triads revealed an efficient, stepwise funneling of the excitation energy from the primary donor array to the acceptor core through the intermediate donor. The efficiency of excitation energy transfer and the light-harvesting ability (antenna effect) of the triads was greatly affected by the relative ratio of the primary to the intermediate donors, as well as on the interchromophore distance. Time-resolved fluorescence analyses by time-correlated single-photon counting (TCSPC) and streak camera techniques further confirmed the cascading energy transfer processes on the picosecond time scale. Our results clearly show that DNA nanoscaffolds are promising templates for the design of artificial photonic antennas with structural characteristics that are ideal for the efficient harvesting and transport of energy.

[1]  Clive R. Bagshaw,et al.  Site-Specific Assembly of DNA-Based Photonic Wires by Using Programmable Polyamides , 2011, Angewandte Chemie.

[2]  Philip Tinnefeld,et al.  Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. , 2011, Journal of the American Chemical Society.

[3]  Duane E. Prasuhn,et al.  Self-assembled quantum dot-sensitized multivalent DNA photonic wires. , 2010, Journal of the American Chemical Society.

[4]  Thomas Tørring,et al.  DNA-templated covalent coupling of G4 PAMAM dendrimers. , 2010, Journal of the American Chemical Society.

[5]  Akinori Kuzuya,et al.  Programmed nanopatterning of organic/inorganic nanoparticles using nanometer-scale wells embedded in a DNA origami scaffold. , 2010, Small.

[6]  Kersten S. Rabe,et al.  Orthogonal protein decoration of DNA origami. , 2010, Angewandte Chemie.

[7]  Masayuki Endo,et al.  A versatile DNA nanochip for direct analysis of DNA base-excision repair. , 2010, Angewandte Chemie.

[8]  Duane E. Prasuhn,et al.  Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture. , 2010, ACS nano.

[9]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[10]  Akinori Kuzuya,et al.  Discrete and active enzyme nanoarrays on DNA origami scaffolds purified by affinity tag separation. , 2010, Journal of the American Chemical Society.

[11]  Hao Yan,et al.  Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. , 2010, Nano letters.

[12]  Nadrian C Seeman,et al.  Structural DNA nanotechnology: growing along with Nano Letters. , 2010, Nano letters.

[13]  R. Nolte,et al.  Macromolecular multi-chromophoric scaffolding. , 2010, Chemical Society reviews.

[14]  N. Stephanopoulos,et al.  Impact of assembly state on the defect tolerance of TMV-based light harvesting arrays. , 2010, Journal of the American Chemical Society.

[15]  Hao Yan,et al.  DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. , 2010, Angewandte Chemie.

[16]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[17]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[18]  C. Niemeyer Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. , 2010, Angewandte Chemie.

[19]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[20]  K. Nelson,et al.  Virus-templated assembly of porphyrins into light-harvesting nanoantennae. , 2010, Journal of the American Chemical Society.

[21]  Masayuki Endo,et al.  Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. , 2010, Journal of the American Chemical Society.

[22]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[23]  Hao Yan,et al.  Template-directed nucleation and growth of inorganic nanoparticles on DNA scaffolds. , 2009, Angewandte Chemie.

[24]  Dongho Kim,et al.  Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. , 2009, Accounts of chemical research.

[25]  Reji Varghese,et al.  White-light-emitting DNA (WED). , 2009, Chemistry.

[26]  N. Seeman,et al.  Prototyping nanorod control: A DNA double helix sheathed within a DNA six-helix bundle. , 2009, Chemistry & biology.

[27]  Akinori Kuzuya,et al.  Precisely Programmed and Robust 2D Streptavidin Nanoarrays by Using Periodical Nanometer‐Scale Wells Embedded in DNA Origami Assembly , 2009, Chembiochem : a European journal of chemical biology.

[28]  David Neff,et al.  NTA directed protein nanopatterning on DNA Origami nanoconstructs. , 2009, Journal of the American Chemical Society.

[29]  T. Moore,et al.  Multiantenna artificial photosynthetic reaction center complex. , 2009, The journal of physical chemistry. B.

[30]  Itamar Willner,et al.  Enzyme cascades activated on topologically programmed DNA scaffolds. , 2009, Nature nanotechnology.

[31]  I. Willner,et al.  Self-assembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires. , 2009, Nano letters.

[32]  Suman Ranjit,et al.  Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET. , 2009, The journal of physical chemistry. B.

[33]  Hao Yan,et al.  Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles , 2009, Science.

[34]  B. Albinsson,et al.  Self-assembled DNA photonic wire for long-range energy transfer. , 2008, Journal of the American Chemical Society.

[35]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[36]  D. Lilley,et al.  Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids , 2008, Proceedings of the National Academy of Sciences.

[37]  Hao Yan,et al.  DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. , 2008, Angewandte Chemie.

[38]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[39]  G. Fleming,et al.  Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein. , 2008, The journal of physical chemistry. B.

[40]  P. Dervan,et al.  Programming multiple protein patterns on a single DNA nanostructure. , 2008, Journal of the American Chemical Society.

[41]  T. Majima,et al.  Porphyrin light-harvesting arrays constructed in the recombinant tobacco mosaic virus scaffold. , 2007, Chemistry.

[42]  P. Dervan,et al.  Addressing single molecules on DNA nanostructures. , 2007, Angewandte Chemie.

[43]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[44]  Nadrian C. Seeman,et al.  An Overview of Structural DNA Nanotechnology , 2007, Molecular biotechnology.

[45]  N. Aratani,et al.  Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer. , 2007, Chemical Society reviews.

[46]  Hao Yan,et al.  Self-assembled peptide nanoarrays: an approach to studying protein-protein interactions. , 2007, Angewandte Chemie.

[47]  M. Francis,et al.  Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. , 2007, Journal of the American Chemical Society.

[48]  Yingfu Li,et al.  Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates , 2006, Nucleic acids research.

[49]  Hao Yan,et al.  DNA tile based self-assembly: building complex nanoarchitectures. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[50]  Andrew D. Ellington,et al.  Functional DNAzymes organized into two-dimensional arrays. , 2006, Nano letters.

[51]  A Paul Alivisatos,et al.  Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. , 2006, Nano letters.

[52]  F. Felici,et al.  Supramolecular binding of cationic porphyrins on a filamentous bacteriophage template: toward a noncovalent antenna system. , 2006, Journal of the American Chemical Society.

[53]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[54]  Hao Yan,et al.  DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. , 2006, Angewandte Chemie.

[55]  J. Reif,et al.  Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. , 2006, Angewandte Chemie.

[56]  Hao Yan,et al.  Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA Nanogrids on a surface. , 2006, Nano letters.

[57]  Karin Musier-Forsyth,et al.  Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. , 2005, Nano letters.

[58]  Hao Yan,et al.  Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. , 2005, Angewandte Chemie.

[59]  T. Weil,et al.  Probing intramolecular Förster resonance energy transfer in a naphthaleneimide-peryleneimide-terrylenediimide-based dendrimer by ensemble and single-molecule fluorescence spectroscopy. , 2005, Journal of the American Chemical Society.

[60]  I. V. van Stokkum,et al.  Ultrafast energy-electron transfer cascade in a multichromophoric light-harvesting molecular square. , 2005, Journal of the American Chemical Society.

[61]  Hao Yan,et al.  Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. , 2005, Nano letters.

[62]  H. Imahori,et al.  Giant multiporphyrin arrays as artificial light-harvesting antennas. , 2004, The journal of physical chemistry. B.

[63]  Hao Yan,et al.  DNA-templated self-assembly of protein and nanoparticle linear arrays. , 2004, Journal of the American Chemical Society.

[64]  I. Yamazaki,et al.  Bioinspired molecular design of light-harvesting multiporphyrin arrays. , 2004, Angewandte Chemie.

[65]  V. Balzani,et al.  Light-harvesting dendrimers. , 2003, Current opinion in chemical biology.

[66]  Yan Liu,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[67]  F. Würthner,et al.  Energy transfer in multichromophoric self-assembled molecular squares. , 2003, Organic & biomolecular chemistry.

[68]  Vincenzo Balzani,et al.  Light-harvesting dendrimers: efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. , 2002, Angewandte Chemie.

[69]  I. Yamazaki,et al.  Dendritic multiporphyrin arrays as light-harvesting antennae: effects of generation number and morphology on intramolecular energy transfer. , 2002, Chemistry.

[70]  T. Weil,et al.  Shape-persistent, fluorescent polyphenylene dyads and a triad for efficient vectorial transduction of excitation energy. , 2002, Angewandte Chemie.

[71]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[72]  E. W. Meijer,et al.  Energy transfer in supramolecular assemblies of oligo(p-phenylene vinylene)s terminated poly(propylene imine) dendrimers , 2000 .

[73]  Jean M. J. Fréchet,et al.  Light-harvesting dendrimers , 2000 .

[74]  K Schulten,et al.  Architecture and mechanism of the light-harvesting apparatus of purple bacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[75]  B. Valeur,et al.  Multichromophoric Cyclodextrins. 4. Light Conversion by Antenna Effect , 1996 .

[76]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[77]  Thomas A. Moore,et al.  Molecular mimicry of photosynthetic energy and electron transfer , 1993 .

[78]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.