The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems

The global homeomorphism theorem is the following specifically multidimensional phenomenon: any locally homeomorphic quasiconformal mapping f: R n → R n is a bijection if n≥3.

[1]  Matti Vuorinen,et al.  Conformal Geometry and Quasiregular Mappings , 1988 .

[2]  Prime ends and quasiconformal mappings , 1979 .

[3]  Matti Vuorinen,et al.  Inequalities for quasiconformal mappings in space , 1993 .

[4]  W. Ziemer Extremal length and $p$-capacity. , 1969 .

[5]  Yu. G. Reshetnyak Liouville's theorem on conformal mappings for minimal regularity assumptions , 1967 .

[6]  Yu. G. Reshetnyak Space mappings with bounded distortion , 1967 .

[7]  F. John Rotation and strain , 1961 .

[8]  M. Vuorinen SPACE MAPPINGS WITH BOUNDED DISTORTION (Translations of Mathematical Monographs 73) , 1990 .

[9]  M. Gromov,et al.  Hyperbolic Manifolds, Groups and Actions , 1981 .

[10]  L. Ahlfors Zur Theorie der Überlagerungsflächen , 1935 .

[11]  F. Gehring Symmetrization of rings in space , 1961 .

[12]  S. Rickman The analogue of Picard's theorem for quasiregular mappings in dimension three , 1985 .

[13]  M. Vuorinen Quadruples and spatial quasiconformal mappings , 1990 .

[14]  B. Fuglede Extremal length and functional completion , 1957 .

[15]  O. Martio,et al.  Universal radius of injectivity for locally quasiconformal mappings , 1978 .

[16]  C. Loewner On the Conformal Capacity in Space , 1959 .

[17]  D. Sullivan,et al.  Quasiconformal 4-manifolds , 1989 .

[18]  M. Vamanamurthy,et al.  Dimension-free quasiconformal distortion in $n$-space , 1986 .

[19]  L. Ahlfors,et al.  Conformal invariants and function-theoretic null-sets , 1950 .

[20]  J. Sarvas,et al.  Injectivity theorems in plane and space , 1979 .

[21]  Joseph J. Hesse Ap-extremal length andp-capacity equality , 1975 .

[22]  Tadeusz Iwaniec,et al.  $p$-harmonic tensors and quasiregular mappings , 1992 .

[23]  Frederick W. Gehring,et al.  The coefficients of quasiconformality of domains in space , 1965 .

[24]  A. Marden,et al.  A Removable Singularity Theorem for Local Homeomorphisms , 1970 .

[25]  RINGS AND QUASICONFORMAL MAPPINGS IN SPACE. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Tadeusz Iwaniec,et al.  Quasiregular mappings in even dimensions , 1993 .

[27]  F. John On quasi‐isometric mappings, II , 1968 .

[28]  Guanggui Ding THE APPROXIMATION PROBLEM OF ALMOST ISOMETRIC OPERATORS BY ISOMETRIC OPERATORS , 1988 .

[29]  F. Gehring Injectivity of local quasi-isometries , 1982 .

[30]  S. Rickman On the number of omitted values of entire quasiregular mappings , 1980 .

[31]  F. Gehring,et al.  Topics in quasiconformal mappings , 1992 .

[32]  M. Vuorinen,et al.  Self-similar Cantor sets and quasiregular mappings. , 1992 .

[33]  V. Zorič An Isolated Singularity of Mappings with Bounded Distortion , 1970 .

[34]  Jussi Väisälä,et al.  Lectures on n-Dimensional Quasiconformal Mappings , 1971 .

[35]  Stability of isometries on Banach spaces , 1983 .

[36]  O. Lehto,et al.  Univalent functions and Teichm?uller space , 1986 .

[37]  T. Parthasarathy,et al.  On global univalence theorems , 1983 .

[38]  L. Ahlfors,et al.  Lectures on quasiconformal mappings , 1966 .