Numerical solutions for constrained time-delayed optimal control problems

In this paper, time-delayed optimal control problems governed by delayed differential equation are solved. Two different techniques based on integration and differentiation matrices are considered. The time-delayed term of the problem has been approximated by Chebyshev interpolating polynomials. On this basis, the optimal control problem can be solved as a mathematical programming problem. The example illustrates the robustness, accuracy and efficiency of the proposed numerical techniques.

[1]  Elsayed M. E. Elbarbary,et al.  Chebyshev finite difference approximation for the boundary value problems , 2003, Appl. Math. Comput..

[2]  M. S. Salim,et al.  A Chebyshev approximation for solving optimal control problems , 1995 .

[3]  Kok Lay Teo,et al.  Control parametrization enhancing technique for optimal discrete-valued control problems , 1999, Autom..

[4]  K. Wong,et al.  The control parametrization enhancing transform for constrained time--delayed optimal control problems , 2002 .

[5]  Elsayed M. E. Elbarbary,et al.  Higher order pseudospectral differentiation matrices , 2005 .

[6]  K. Teo,et al.  Control parametrization enhancing technique for time optimal control problems , 1997 .

[7]  Fabio Bagagiolo Optimal control of finite horizon type for a multidimensional delayed switching system , 2005 .

[8]  Mamdouh M. El-Kady,et al.  A Chebyshev Finite Difference Method For Solving A Class Of Optimal Control Problems , 2003, Int. J. Comput. Math..

[9]  K. Teo,et al.  The control parameterization enhancing transform for constrained optimal control problems , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[10]  M. S. Salim,et al.  Numerical treatment of multiobjective optimal control problems , 2003, Autom..

[11]  Tao Tang,et al.  Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems , 1996, SIAM J. Sci. Comput..

[12]  S. E. El-gendi,et al.  Chebyshev Solution of Differential, Integral and Integro-Differential Equations , 1969, Comput. J..

[13]  Richard Baltensperger,et al.  Spectral Differencing with a Twist , 2002, SIAM J. Sci. Comput..

[14]  Elsayed M. E. Elbarbary,et al.  A Chebyshev expansion method for solving nonlinear optimal control problems , 2002, Appl. Math. Comput..

[15]  Elsayed M. E. Elbarbary Chebyshev finite difference method for the solution of boundary-layer equations , 2005, Appl. Math. Comput..

[16]  K. Kaji,et al.  Nonlinearly constrained time-delayed optimal control problems , 1994 .