A review on solar stills for brine desalination

This paper attempts to categorize solar stills into six sorts based on the design guidelines used in each device. The properties of these design guidelines are detailed and evaluated from the angle of enhancing the productivity of solar stills. Preferred design guidelines are recommended for various climate conditions. Fundamental heat and mass transfer process analyses are presented to provide a comprehensive understanding of design principles and to serve as a theoretical guide for structure modification. Most of popular heat and mass transfer correlations in literatures are summarized and evaluated here.

[1]  Farshad Farshchi Tabrizi,et al.  Experimental study of an integrated basin solar still with a sandy heat reservoir , 2010 .

[2]  Zhen-Hua Liu,et al.  A novel integrated solar desalination system with multi-stage evaporation/heat recovery processes , 2014 .

[3]  Ali A. Badran,et al.  A solar still augmented with a flat-plate collector , 2005 .

[4]  D. Inan,et al.  A solar still with minimum inclination, coupled to an outside condenser , 1999 .

[5]  Vassilis Belessiotis,et al.  Experimental investigation of a solar still coupled with solar collectors , 2001 .

[6]  Ahmed A. Al-Ghamdi,et al.  Thermal performance of a single basin solar still with PCM as a storage medium , 2009 .

[7]  S. C. Kaushik,et al.  Energy, exergy and thermo-economic analysis of solar distillation systems: A review , 2013 .

[8]  Klemens Schwarzer,et al.  Solar thermal desalination system with heat recovery , 2001 .

[9]  T. Alwarsamy,et al.  An experimental study on a regenerative solar still with energy storage medium — Jute cloth , 2010 .

[10]  Zhang Xiaoyan,et al.  A group of improved heat and mass transfer correlations in solar stills , 2002 .

[11]  K. Vinoth Kumar,et al.  Performance study on solar still with enhanced condensation , 2008 .

[12]  Vassilis Belessiotis,et al.  Experimental investigation of the behavior of a solar still coupled with hot water storage tank , 2003 .

[13]  M. K. Gaur,et al.  Development of empirical relation to evaluate the heat transfer coefficients and fractional energy in basin type hybrid (PV/T) active solar still , 2010 .

[14]  P. T. Tsilingiris The glazing temperature measurement in solar stills – Errors and implications on performance evaluation , 2011 .

[15]  Hiroshi Tanaka,et al.  A vertical multiple-effect diffusion-type solar still coupled with a heat-pipe solar collector , 2004 .

[16]  Hiroshi Tanaka,et al.  Monthly optimum inclination of glass cover and external reflector of a basin type solar still with internal and external reflector , 2010 .

[17]  Varun,et al.  Solar stills: A review , 2010 .

[18]  Hiroshi Tanaka,et al.  Improvement of the tilted wick solar still by using a flat plate reflector , 2007 .

[19]  Shruti Aggarwal,et al.  Thermal modelling of a double condensing chamber solar still: an experimental validation , 1999 .

[20]  A. A. Madani,et al.  Yield of solar stills with porous basins , 1995 .

[21]  Hiroshi Tanaka,et al.  Experimental study of a basin type solar still with internal and external reflectors in winter , 2009 .

[22]  G. N. Tiwari,et al.  Effect of water depth on internal heat and mass transfer for active solar distillation , 2005 .

[23]  A. E. Kabeel,et al.  Review of researches and developments on solar stills , 2011 .

[24]  B. Janarthanan,et al.  Performance of floating cum tilted-wick type solar still with the effect of water flowing over the glass cover , 2006 .

[25]  A. S. Nafey,et al.  SOLAR STILL PRODUCTIVITY ENHANCEMENT , 2001 .

[26]  M. K. Phadatare,et al.  Influence of water depth on internal heat and mass transfer in a plastic solar still , 2007 .

[27]  G. N. Tiwari,et al.  Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition , 2006 .

[28]  Shiv Kumar,et al.  Life cycle cost analysis of single slope hybrid (PV/T) active solar still , 2009 .

[29]  Hiroshi Tanaka,et al.  Experimental study of vertical multiple-effect diffusion solar still coupled with a flat plate reflector , 2009 .

[30]  S. Shukla,et al.  Thermal modeling of solar stills: an experimental validation , 2005 .

[31]  Rahbar Rahimi,et al.  Modeling and determination of heat transfer coefficient in a basin solar still using CFD , 2011 .

[32]  G. N. Tiwari,et al.  THERMAL MODELING OF PASSIVE AND ACTIVE SOLAR STILLS FOR DIFFERENT DEPTHS OF WATER BY USING THE CONCEPT OF SOLAR FRACTION , 2006 .

[33]  S. D. Probert,et al.  Solar-desalination prospects for the sultanate of Oman , 1995 .

[34]  K. Srithar,et al.  Performance analysis of solar stills based on various factors affecting the productivity—A review , 2011 .

[35]  Nagamany Nirmalakhandan,et al.  Low temperature desalination using solar collectors augmented by thermal energy storage , 2012 .

[36]  Hassan E.S. Fath,et al.  Mathematical model development for a new solar desalination system (SDS) , 2008 .

[37]  G. N. Tiwari,et al.  Performance evaluation of a solar still by using the concept of solar fractionation , 2004 .

[38]  A. A. El-Sebaii,et al.  Effect of wind speed on active and passive solar stills , 2004 .

[39]  Hiroshi Tanaka,et al.  Theoretical analysis of a basin type solar still with internal and external reflectors , 2006 .

[40]  A. A. Mabrouk,et al.  Enhancement of solar still productivity using floating perforated black plate , 2002 .

[41]  H.M.S. Hussein,et al.  Experimental and financial investigation of asymmetrical solar stills with different insulation , 1995 .

[42]  G. N. Tiwari,et al.  Effect of condensing cover material on yield of an active solar still: an experimental validation , 2008 .

[43]  José L. Fernández,et al.  Cavity geometry influence on mass flow rate for single and double slope solar stills , 2000 .

[44]  Rajendra Singh Adhikari,et al.  Estimation of mass‐transfer rates in solar stills , 1990 .

[45]  Donatien Njomo,et al.  Heat and mass transfer processes in a solar still with an indirect evaporator–condenser , 2000 .

[46]  K. Srithar,et al.  Desalination of effluent using fin type solar still , 2008 .

[47]  Abdulrahman Ghoneyem,et al.  Software to analyze solar stills and an experimental study on the effects of the cover , 1997 .

[48]  Kiyanoosh Razzaghi,et al.  Effect of water flow rate on internal heat and mass transfer and daily productivity of a weir-type cascade solar still , 2010 .

[49]  Omar Badran,et al.  Experimental study of the enhancement parameters on a single slope solar still productivity , 2007 .

[50]  G. N. Tiwari,et al.  Analysis of double effect active solar distillation , 1996 .

[51]  K. Kalidasa Murugavel,et al.  Single basin double slope solar still with minimum basin depth and energy storing materials , 2010 .

[52]  Amos Madhlopa,et al.  Numerical study of a passive solar still with separate condenser , 2009 .

[53]  A. S. Nafey,et al.  Parameters affecting solar still productivity , 2000 .

[54]  Bassam Abu-Hijleh,et al.  Enhanced solar still performance using water film cooling of the glass cover , 1996 .

[55]  S. Aboul-Enein,et al.  Thermal performance of a single-basin solar still integrated with a shallow solar pond , 2008 .

[56]  Hiroshi Tanaka,et al.  Indoor experiments of the vertical multiple-effect diffusion-type solar still coupled with a heat-pipe solar collector , 2005 .

[57]  Hong-Yang Guan,et al.  Performance optimization study on an integrated solar desalination system with multi-stage evaporation/heat recovery processes , 2014 .

[58]  Rick Hurt,et al.  Theory and experimental investigation of a weir-type inclined solar still , 2008 .

[59]  K. Kalidasa Murugavel,et al.  Different parameters affecting the rate of evaporation and condensation on passive solar still – A review , 2014 .

[60]  Sabah A. Abdul-Wahab,et al.  Performance study of the inverted absorber solar still with water depth and total dissolved solid , 2011 .

[61]  G. N. Tiwari,et al.  Optimization of number of collectors for integrated PV/T hybrid active solar still , 2010 .

[62]  Hiroshi Tanaka Tilted wick solar still with flat plate bottom reflector , 2011 .

[63]  Hiroshi Tanaka,et al.  Experimental study of basin-type, multiple-effect, diffusion-coupled solar still , 2002 .

[64]  W. E. Alnaser,et al.  Performances of single and double basin solar-stills , 2004 .

[65]  K. Srithar,et al.  SINGLE BASIN SOLAR STILL WITH FIN FOR ENHANCING PRODUCTIVITY , 2008 .

[66]  Ugur Atikol,et al.  An experimental study on an inclined solar water distillation system , 2005 .

[67]  A. K. Singh,et al.  Optimization of Orientation for Higher Yield of Solar Still for a given Location , 1995 .

[68]  K Abu-Hijleh,et al.  Experimental study of a solar still with sponge cubes in basin , 2003 .

[69]  Nabil Hussain A. Rahim Utilization of a forced condensing technique in a moving film inclined solar desalination still , 1995 .

[70]  T. V. Arjunan,et al.  Active solar distillation--A detailed review , 2010 .

[71]  Hiroshi Tanaka,et al.  A highly productive basin-type-multiple-effect coupled solar still , 2000 .

[72]  Amimul Ahsan,et al.  Parameters affecting the performance of a low cost solar still , 2014 .

[73]  Abdul Jabbar N. Khalifa,et al.  Effect of insulation thickness on the productivity of basin type solar stills: An experimental verification under local climate , 2009 .

[74]  Aghareed M. Tayeb Performance study of some designs of solar stills , 1992 .

[75]  Ferdinando Salata,et al.  A first approach study on the desalination of sea water using heat transformers powered by solar ponds , 2014 .