TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.

[1]  M. Wright,et al.  TADPOL: A 1.3 mm SURVEY OF DUST POLARIZATION IN STAR-FORMING CORES AND REGIONS , 2013, 1310.6653.

[2]  C. Bennett,et al.  THE SUBMILLIMETER POLARIZATION SPECTRUM OF M17 , 2013, 1306.3259.

[3]  Zhi-Yun Li,et al.  ALIGNMENT BETWEEN FLATTENED PROTOSTELLAR INFALL ENVELOPES AND AMBIENT MAGNETIC FIELDS , 2013, 1305.2922.

[4]  C. Hull,et al.  THE MAGNETIC FIELD MORPHOLOGY OF THE CLASS 0 PROTOSTAR L1157-mm , 2013, 1304.6739.

[5]  Zhi-Yun Li,et al.  DOES MAGNETIC-FIELD–ROTATION MISALIGNMENT SOLVE THE MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION? , 2013, 1301.6545.

[6]  C. Hull,et al.  PROTOSTELLAR DISK FORMATION ENABLED BY WEAK, MISALIGNED MAGNETIC FIELDS , 2013, 1301.5648.

[7]  L. Mundy,et al.  MISALIGNMENT OF MAGNETIC FIELDS AND OUTFLOWS IN PROTOSTELLAR CORES , 2012, 1212.0540.

[8]  L. Hartmann,et al.  A ∼0.2-solar-mass protostar with a Keplerian disk in the very young L1527 IRS system , 2012, Nature.

[9]  B. Matthews,et al.  SUBMILLIMETER POLARIZATION OF GALACTIC CLOUDS: A COMPARISON OF 350 μm AND 850 μm DATA , 2012, 1204.1378.

[10]  P. Hennebelle,et al.  Protostellar disk formation and transport of angular momentum during magnetized core collapse , 2012, 1203.1193.

[11]  A. Lazarian,et al.  THE ROLE OF TURBULENT MAGNETIC RECONNECTION IN THE FORMATION OF ROTATIONALLY SUPPORTED PROTOSTELLAR DISKS , 2011, 1109.3716.

[12]  Di Li,et al.  THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION , 2011, 1108.0410.

[13]  L. Hartmann,et al.  COMPLEX STRUCTURE IN CLASS 0 PROTOSTELLAR ENVELOPES. II. KINEMATIC STRUCTURE FROM SINGLE-DISH AND INTERFEROMETRIC MOLECULAR LINE MAPPING , 2011, 1107.4361.

[14]  B. Matthews,et al.  MAGNETIC FIELD STRUCTURE AROUND LOW-MASS CLASS 0 PROTOSTARS: B335, L1527, AND IC348-SMM2 , 2011, 1103.4370.

[15]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[16]  K. Tassis,et al.  THE GALACTIC MAGNETIC FIELD'S EFFECT IN STAR-FORMING REGIONS , 2010, 1012.3702.

[17]  Wolf B. Dapp,et al.  Averting the magnetic braking catastrophe on small scales: disk formation due to Ohmic dissipation Corrigendum , 2010, 1010.2305.

[18]  L. Hartmann,et al.  THE INNER ENVELOPE AND DISK OF L1527 REVEALED: GEMINI L′-BAND-SCATTERED LIGHT IMAGING , 2010, 1008.3429.

[19]  Jessie L. Dotson,et al.  350 μm POLARIMETRY FROM THE CALTECH SUBMILLIMETER OBSERVATORY , 2010, 1001.2790.

[20]  D. Wilner,et al.  PROSAC: a submillimeter array survey of low-mass protostars - II. The mass evolution of envelopes, disks, and stars from the class 0 through I stages , 2009, 0909.3386.

[21]  P. Hennebelle,et al.  Disk formation during collapse of magnetized protostellar cores , 2009, 0909.3190.

[22]  Brenda C. Matthews,et al.  THE LEGACY OF SCUPOL: 850 μm IMAGING POLARIMETRY FROM 1997 TO 2005 , 2009 .

[23]  L. Loinard,et al.  VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. III. HP TAU/G2 AND THE THREE-DIMENSIONAL STRUCTURE OF TAURUS , 2009, 0903.5338.

[24]  L. Mundy,et al.  GRAIN GROWTH AND DENSITY DISTRIBUTION OF THE YOUNGEST PROTOSTELLAR SYSTEMS , 2009, 0902.2008.

[25]  L. Hartmann,et al.  Constraining the Envelope Structure of L1527 IRS: Infrared Scattered Light Modeling , 2008, 0802.2677.

[26]  R. Crutcher,et al.  Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations , 2008, 0802.2253.

[27]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[28]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[29]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[30]  F. Shu,et al.  Gravitational Collapse of Magnetized Clouds. I. Ideal Magnetohydrodynamic Accretion Flow , 2006, astro-ph/0604573.

[31]  D. Chuss,et al.  Results of SPARO 2003: Mapping Magnetic Fields in Giant Molecular Clouds , 2006, astro-ph/0602455.

[32]  Zhi-Yun Li,et al.  Collapse of Magnetized Singular Isothermal Toroids. I. The Nonrotating Case , 2003, astro-ph/0311376.

[33]  Zhi-Yun Li,et al.  Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking , 2003, astro-ph/0311377.

[34]  E. I. Robson,et al.  A submillimetre imaging polarimeter at the James Clerk Maxwell Telescope , 2003, astro-ph/0302609.

[35]  Jessie L. Dotson,et al.  A Primer on Far‐Infrared Polarimetry , 2000 .

[36]  K. Tomisaka The Evolution of the Angular Momentum Distribution during Star Formation , 1999, The Astrophysical journal.

[37]  J. Richer,et al.  The Structure of Protostellar Envelopes Derived from Submillimeter Continuum Images , 1999, astro-ph/9909494.

[38]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[39]  G. Blake,et al.  Envelope Structure on 700 AU Scales and the Molecular Outflows of Low-Mass Young Stellar Objects , 1998, The Astrophysical journal.

[40]  K. Tomisaka Collapse-Driven Outflow in Star-Forming Molecular Cores , 1998, astro-ph/9806085.

[41]  M. Hayashi,et al.  Interferometric Imaging of IRAS 04368+2557 in the L1527 Molecular Cloud Core: A Dynamically Infalling Envelope with Rotation , 1997 .

[42]  N. Evans,et al.  Small-scale structure of candidates for protostellar collapse. I. BIMA observations of L1527 and CB 54 , 1996 .

[43]  Mark Dragovan,et al.  The Shapes and Alignment Properties of Interstellar Dust Grains , 1995 .

[44]  G. Fuller,et al.  Gravitational Infall in the Dense Cores L1527 and L483 , 1995 .

[45]  A. Goodman,et al.  Does near-infrared polarimetry reveal the magnetic field in cold dark clouds? , 1995 .

[46]  L. Hartmann,et al.  A new optical extinction law and distance estimate for the Taurus-Auriga molecular cloud , 1994 .

[47]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[48]  S. Basu,et al.  Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. I. Axisymmetric solutions , 1994 .

[49]  A. Goodman,et al.  The structure of magnetic fields in dark clouds: Infrared polarimetry in B216-217 , 1992 .

[50]  G. Fuller,et al.  Far-infrared and submillimeter-wavelength observations of star-forming dense cores. I. Spectra , 1991 .

[51]  T. Jones Infrared polarimetry and the interstellar magnetic field , 1989 .

[52]  P. Myers,et al.  A survey for dense cores in dark clouds , 1989 .

[53]  B. Draine,et al.  Infrared extinction and polarization due to partially aligned spheroidal grains: Models for the dust toward the BN object , 1985 .

[54]  T. Mouschovias,et al.  The angular momentum problem and magnetic braking - an exact time-dependent solution , 1979 .

[55]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[56]  B. Dennison On the infrared polarization of the Orion Nebula , 1977 .

[57]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[58]  S. Odell,et al.  Transfer of polarized radiation in self-absorbed synchrotron sources. I - Results for a homogeneous source. [astrophysics , 1977 .