HIGH QUANTILE ESTIMATION AND THE PORT METHODOLOGY
暂无分享,去创建一个
M. Ivette Gomes | M. Gomes | L. Henriques-Rodrigues | L ´ õgia Henriques-Rodrigues | L. Henriques‐Rodrigues
[1] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[2] Natalia M. Markovich. Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and Practice , 2007 .
[3] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[4] L. Haan,et al. A moment estimator for the index of an extreme-value distribution , 1989 .
[5] S. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .
[6] M. Ivette Gomes,et al. Semi-parametric second-order reduced-bias high quantile estimation , 2009 .
[7] M. Ivette Gomes,et al. A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .
[8] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[9] Laurens de Haan,et al. On regular variation and its application to the weak convergence of sample extremes , 1973 .
[10] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[11] M. Ivette Gomes,et al. Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .
[12] A. Dekkers,et al. Optimal choice of sample fraction in extreme-value estimation , 1993 .
[13] I. Weissman. Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .
[14] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[15] M. Gomes,et al. Revisiting the Role of the Jackknife Methodology in the Estimation of a Positive Tail Index , 2005 .
[16] M. Ivette Gomes,et al. Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .
[17] L. Haan,et al. On optimising the estimation of high quantiles of a probability distribution , 2003 .
[18] M. Ivette Gomes,et al. IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .
[19] On the extremes of randomly sub-sampled time series , 2008 .
[20] M. Gomes,et al. Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .
[21] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[22] Fernanda Figueiredo,et al. Improved reduced-bias tail index and quantile estimators , 2008 .
[23] M. Gomes,et al. Asymptotic comparison of the mixed moment and classical extreme value index estimators , 2008 .
[24] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[25] M. Gomes,et al. Bias Reduction in Risk Modelling: Semi-Parametric , 2006 .
[26] M. Gomes,et al. Reduced‐bias tail index estimation and the jackknife methodology , 2007 .
[27] S. Berman. On Regular Variation and Its Application to the Weak Convergence of Sample Extremes , 1972 .
[28] M. Ivette Gomes,et al. PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..